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Fig. 2. The sequencing and checking validity rules for transactions.

To generate a set of traces composing the transaction, a user
executes on the client side all the smart contract procedures
required on the input objects, references and local parameters,
and generates the output objects and local returns for every
procedure—potentially also using secret parameters and re-
turns. Thus the actual computation behind the transactions is
performed by the user, and the traces forming the transaction
already contain the output objects and return parameters, and
sufficient information to check their validity through smart
contract checkers. This design pattern is related to traditional
optimistic concurrency control.

Only valid transactions are eventually committed into
the Chainspace system, as specified by two validity rules
sequencing and checking presented in Figure 2. Transactions
are considered valid within a context of a set of active objects
maintained by Chainspace, denoted with ↵. Valid transactions
lead to a new context of active objects (eg. ↵0). We denote
this through the triplet (↵,Valid(T ),↵0), which is true if the
execution of transaction T is valid within the context of active
objects ↵ and generates a new context of active objects ↵0. The
two rules are as follows:

• (Sequence rule). A ‘Trace list’ (within a ‘Transaction’
or list of dependencies) is valid if each of the traces are
valid in sequence (see Figure 2 rule for sequencing).
Further, the active objects set is updated in sequence
before considering the validity of each trace.

• (Check rule). A particular ‘Trace’ is valid, if the
sequence of its dependencies are valid, and then in
the resulting active object context, the checker for it
returns true. A further three side conditions must hold:
(1) inputs and references must be active; (2) if the
trace produces any output objects it must also contain
some input objects; and (3) all objects passed to the
checker must be of types defined by the smart contract
of this checker (see Figure 2 rule for checking).

The ordering of active object sets in the validation rules
result in a depth-first validation of all traces, which represents
a depth-first execution and data flow dependency between them.
It is also noteworthy that only the active set of objects needs
to be tracked to determine the validity of new transactions,
which is in the order of magnitude of active objects in the
system. The much longer list of inactive objects, which grows
to encompass the full history of every object in the system is not
needed—which we leverage to enable better when validating
transactions. It also results in a smaller amount of working
memory to perform incremental audits.

A valid transaction is executed in a serialized manner, and

committed or aborted atomically. If it is committed, the new set
of active objects replaces the previous set; if not the set of active
objects does not change. Determining whether a transaction
may commit involves ensuring all the input objects are active,
and all are consumed as a result of the transaction executing,
as well as all new objects becoming available for processing
(references however remain active). Chainspace ensures this
through the distributed atomic commit protocol, S-BAC.

Smart contract composition. A contract procedure may call a
transaction of another smart contract, with specific parameters
and rely upon returned values. This is achieved through passing
the dep variable to a smart contract checker, a validated list of
traces of all the sub-calls performed. The checker can ensure
that the parameters and return values are as expected, and those
dependencies are checked for validity by Chainspace.

Composition of smart contracts is a key feature of a
transparent and auditable computation platform. It allows the
creation of a library of smart contracts that act as utilities for
other higher-level contracts: for example, a simple contract
can implement a cryptographic currency, and other contracts—
for e-commerce for example—can use this currency as part
of their logic. Furthermore, we compose smart contracts, in
order to build some of the functionality of Chainspace itself
as a set of ‘system’ smart contracts, including management of
shards mapping to nodes, key management of shard nodes, and
governance.

Chainspace also supports the atomic batch execution of
multiple procedures for efficiency, that are not dependent on
each other.

Reads. Besides executing transactions, Chainspace clients, need
to read the state of objects, if anything, to correctly form
transactions. Reads, by themselves, cannot lead to inconsistent
state being accepted into the system, even if they are used as
inputs or references to transactions. This is a result of the system
checking the validity rules before accepting a transaction, which
will reject any stale state.

Thus, any mechanism may be used to expose the state of
objects to clients, including traditional relational databases, or
‘no-SQL’ alternatives. Additionally, any indexing mechanism
may be used to allow clients to retrieve objects with specific
characteristics faster. Decentralized, read-only stores have been
extensively studied, so we do not address the question of reads
further in this work.

Privacy by design. Defining smart contract logic as checkers
allows Chainspace to support privacy friendly-contracts by
design. In such contracts some information in objects is not
in the clear, but instead either encrypted using a public key,
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Fig. 3. The state machine representing the active, locked and inactive states
for any object within Chainspace. Each node in a shard replicates the state of
the object, and participates in a consensus protocol that allows it to derive the
invariants “Local prepared”, “All prepared”, and “Some prepared” to update
the state of an object.

scalable and decentralized mechanism to perform Sharded
Byzantine Atomic Commit or S-BAC.

C. Sharded Byzantine Atomic Commit (S-BAC).

Chainspace implements the previously described intra-shard
consensus algorithm for transaction processing in the byzantine
and asynchronous setting, through the Sharded Byzantine
Atomic Commit (S-BAC) protocol, that combines two primitive
protocols: Byzantine Agreement and atomic commit.

• Byzantine agreement ensures that all honest members
of a shard of size 3f +1, agree on a specific common
sequence of actions, despite some f malicious nodes
within the shard. It also guarantees that when agree-
ment is sought, a decision or sequence will eventually
be agreed upon. The agreement protocol is executed
within each shard to coordinate all nodes. We use MOD-
SMART [SB12] implementation of PBFT for state
machine replication that provides an optimal number of
communications steps (similar to PBFT [CL+99]). This
is achieved by replacing reliable broadcast with a spe-
cial leader-driven Byzantine consensus primitive called
Validated and Provable Consensus (VP-Consensus).

• Atomic commit is ran across all shards managing
objects relied upon by a transaction. It ensures that
each shard needs to accept to commit a transaction,
for the transaction to be committed; even if a sin-
gle shard rejects the transaction, then all agree it
is rejected. We propose the use of a simple two-
phase commit protocol [BHG87], composed with an
agreement protocol to achieve this—loosely inspired
by Lamport and Gray [GL06]. This protocol was the
first to reconcile the needs for distributed commit, and
replicated consensus (but only in the non-byzantine
setting).

S-BAC composes the above primitives in a novel way
to ensure that shards process safely and consistently all
transactions. Figure 4 illustrates a simple example of the S-BAC
protocol to commit a single transaction with two inputs and one
output that we may use as an example. The corresponding object
state transitions have been illustrated in Figure 3. The combined

protocol has been described below. For ease of understanding,
in our description we state that all messages are sent and
processed by shards. In reality, some of these are handled by
a designated node in each shard—the BFT-Initiator —as we
discuss at the end of this section.

Initial Broadcast (Prepare). A user acts as a transaction
initiator, and sends ‘prepare(T)’ to at least one honest concerned
node for transaction T . To ensure at least one honest node
receives it, the user may send the message to f +1 nodes of a
single shard, or f + 1 nodes in each concerned shard.

Sequence Prepare. Upon a message ‘prepare(T)’ being re-
ceived, nodes in each shard interpret it as the initiation of a two-
phase commit protocol performed across the concerned shards.
The shard locally sequences ‘prepare(T)’ message through the
Byzantine consensus protocol.

Process Prepare. Upon the first action ‘prepare(T )’ being
sequenced through BFT consensus in a shard, nodes of the
shard implicitly decide whether it should be committed or
aborted. Since all honest nodes in the shard have a consistent
replica of the full sequence of actions, they will all decide the
same consistent action following ‘prepare(T)’.

Transaction T is to be committed if it is valid according to
the usual rules (see Figure 2), in brief: (1) the objects input
or referenced by T in the shard are active, (2) there is no
other instance of the two-phase commit protocol on-going
concerning any of those objects (no locks held) and (3) if T
is valid according to the validity rules, and the smart contract
checkers in the shard. Only the checkers for types of objects
held by the shard are checked by the shard.

If the decision is to commit, the shard broadcasts to all
concerned nodes ‘prepared(T ,commit)’, otherwise it broadcasts
‘prepared(T , abort)’—along with sufficient signatures to con-
vince any party of the collective shard decision (we denote
this action as LOCALPREPARED(*, T)). The objects used or
referenced by T are ‘locked’ (Figure 3) in case of a ‘prepared
commit’ until an ‘accept’ decision on the transaction is reached,
and subsequent transactions concerning them will be aborted by
the shard. Any subsequent ‘prepare(T 00)’ actions in the sequence
are ignored, until a matching accept(T , abort) is reached to
release locks, or forever if the transaction is committed.

Process Prepared (accept or abort). Depending on the deci-
sion of ‘prepare(T )’, the shard sequences ‘accept(T ,commit)’ or
‘accept(T ,abort)’ through the atomic commit protocol across all
the concerned shards—along with all messages and signatures
of the bundle of ‘prepared’ messages relating to T proving to
other shards that the decision should be ‘accept(T ,commit)’ or
‘accept(T ,abort)’ according to its local consensus. If it receives
even a single ‘LOCALPREPARED(T ,abort)’ from another shard
it instead will move to reach consensus on ‘accept(T , abort)’
(denoted as SOMEPREPARED(abort,T)). Otherwise, if all the
shards respond with ‘LOCALPREPARED(T ,commit)’ it will
reach a consensus on ALLPREPARED(commit,T). The final
decision is sent to the user, along with all messages and
signatures of the bundle of ‘accept’ messages relating to T
proving that the final decision should be to commit or abort
according to responses from all concerned shards.

7

+ +

S

S

S

3f + 1

f

+

S
S



User with T{o1, o2} ! o3

Input shard �(o1) BFT BFT

Input shard �(o2) BFT BFT

Output shard �(o3) BFT

Initial
Broadcast

Process
Prepare

Process
Prepared

Process
Accept

Send prepare(T ) Client Accept Confirmation

Create o3

Inactive o1

Inactive o2
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It is possible, that a shard hears a prepared message for
T before a prepare message, due to unreliability, asynchrony
or a malicious user. In that case the shard assumes that a
‘prepare(T)’ message is implicit, and sequences it.

Process Accept. When a shard sequences an ‘accept(T , com-
mit)’ decision, it sets all objects that are inputs to the transaction
T as being inactive (Figure 3). It also creates any output objects
from T via BFT consensus that are to be managed by the shard.
If the output objects are not managed by the shard, the shard
sends requests to the concerned shards to create the objects. On
the other hand if the shard decision is ‘accept(T , abort)’, all
nodes release locks held on inputs or references of transaction
T . Thus those objects remain active and may be used by other
transactions.

As previously mentioned, some of the messages in S-BAC
are handled by a designated node in each shard called the BFT-
Initiator . Specifically, the BFT-Initiator drives the composed
S-BAC protocol by sending ‘prepare(T)’ and then ‘accept(T , *)’
messages to reach BFT consensus within and across shards. It is
also responsible for broadcasting consensus decisions to relevant
parties. The protocol supports a two-phase process to recover
from a malicious BFT-Initiator that suppresses transactions. As
nodes in a shard hear all messages, they wait for the BFT-
Initiator to act on it until they time out. They first send a
reminder to the BFT-Initiator along with the original message
to account for network losses. Next they proceed to wait; if
they time out again, other nodes perform the action of BFT-
Initiator which is idempotent.

D. Concurrency & Scalability

Each transaction T involves a fixed number of concerned
nodes �(T ) within Chainspace, corresponding to the shards
managing its inputs and references. If two transactions T0 and
T1 have disjoint sets of concerned nodes (�(T0) \�(T1) = ;)
they cannot conflict, and are executed in parallel or in any
arbitrary order. If however, two transactions have common
input objects, only one of them is accepted by all nodes. This
is achieved through the S-BAC protocol. It is local, in that it
concerns only nodes managing the conflicting transactions, and
does not require a global consensus.

From the point of view of scalability, Chainspace capacity
grows linearly as more shards are added, subject to transactions
having on average a constant, or sub-linear, number of inputs
and references (see Figure 6). Furthermore, those inputs must
be managed by different nodes within the system to ensure
that load of accepting transactions is distributed across them.

V. SECURITY AND CORRECTNESS

A. Security & Correctness of S-BAC

The S-BAC protocol guarantees a number of key properties,
on which rest the security of Chainspace, namely liveness
consistency, and validity. Before proceeding with stating those
properties in details, and proving them we note three key
invariants, that nodes may decide:

• LOCALPREPARED(commit / abort, T): A node con-
siders that LOCALPREPARED(commit / abort, T) for
a shard holds, if it receives at least f + 1 distinct
signed messages from nodes in the shard, stating ‘pre-
pared(commit, T)’ or ‘prepared(abort, T)’ respectively.
As a special case a node automatically concludes
LOCALPREPARED(commit / abort, T) for a shard it
is a member of, if all the preconditions necessary to
provide that answer are present when an ‘prepare(T)’
is sequenced.

• ALLPREPARED(commit, T): A node considers that
‘ALLPREPARED(commit, T)’ holds if it believes that
‘LOCALPREPARED(commit, T)’ holds for all shards
with concerned nodes for T . Note this may only
be decided after reaching a conclusion (e.g. through
receiving signed messages) about all shards.

• SOMEPREPARED(abort, T): A node considers that
‘SOMEPREPARED(abort, T)’ holds if it believes that
‘LOCALPREPARED(abort, T)’ holds for at least one
shard with concerned nodes for T . This may be
concluded after only reaching a conclusion for a single
shard, including the shard the node may be part of.

Liveness ensures that transactions make progress once
proposed by a user, and no locks are held indefinitely on
objects, preventing other transactions from making progress.
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