

H2020-ICT-2016-1 DECODE D4.14: Final DECODE app release

 0

Final DECODE app

release. App published on

multiple platforms

H2020-ICT-2016-1 DECODE D4.14: Final DECODE app release

 1

Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

D4.14 Final DECODE app release. App published on multiple platforms

Version Number: V1.0

Lead beneficiary: DRIBIA Data Research S.L.

Due Date: October 31st 2019

Author(s): Oleguer Sagarra, Xavier Hoffmann, Xavier Clotet, Pol Colomer (DRIBIA)

Editors and reviewers: Javier Rodríguez, Pau Balcells (IMI), Jim Barrit (Thoughtworks),

Pablo Aragón, Rohit Kumar (Eurecat).

Dissemination level:

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission

Services)

CO Confidential, only for members of the consortium (including the Commission

Services)

Approved by: Francesca Bria (DECODE Project Coordinator)

Date: 29/10/2019

This report is currently awaiting approval from the EC and cannot be not considered to be a

final version.

H2020-ICT-2016-1 DECODE D4.14: Final DECODE app release

 2

Table of Contents

Introduction 3

Part 1: General framework 5

General purpose of the app 5

App taxonomy 6

Relations 7

Pilot mapping: DDDC & BCNNow 8

Part 2: Technological implementation 10

Development methodology 10

Tech stack 10

App 11

Sources of data 12

Credential service 12

Atlas 12

Service stack 13

DDDC website 13

Petition service 13

BCNNow 13

Part 3: Future roadmap 14

Adding new services to the app 15

Pilot mapping: IoT 16

Back-end development 17

Smartcitizen website 17

Stream encoder 17

Policy service 17

Data store 17

Other technical steps 17

Conclusion 19

H2020-ICT-2016-1 DECODE D4.14: Final DECODE app release

 3

Introduction

This short document is intended to be distributed with the DECODE APP v2.0 and its

attached documentation (see the repository and website). The app is distributed in

both Google Play and Apple Store and is available for the general public in European

countries.

The app is a meeting point of several branches of work present in the DECODE project

Work Packages (WPs). It integrates the technological tools developed in WP3

(Blockchain for decentralised data and digital identity management) and WP4

(DECODE IoT node distributed hardware & software platform) and it is intended to serve

(or be extendable to do it) the pilots designed in WP5 (Pilots and Participatory

Innovation) following the recommendation enunciated in WP2 (Decentralised

Governance and Economic framework: Commons data platforms for digital

sovereignty) and the design principles worked throughout WP1 (Privacy aware citizen

centric distributed architecture).

The app has been designed incorporating the conclusions of user research (see

deliverable D4.101) and with the aim to be extendable, modular and flexible enough so

all the cases researched and developed to exemplify the DECODE technology can be

fitted into it (see deliverables D5.52 and D5.63). Not only that, but it is intended to be

extendable to other cases thanks to its open source license and modular architecture.

Currently, two services are fully implemented in the app corresponding to real world

pilots tested in Barcelona: BCNNow4 (lead by Eurecat) and DDDC5 (lead by UOC). The

full design for integration for the Citizen Science Data Governance IoT pilot6 (IoT pilot for

short, lead by Thingful), the third pilot, is sketched in this document, as an example of

how any interested developer should adapt the current codebase to needs posed by

a new project.

This document is structured as follows: The first part covers the general implementation

of the taxonomy existing in the DECODE pilots, a general schema of its parts and the

actual detailed implementation of the schema for the two services currently

implemented in the app. Then, a second part follows where the technology used within

the app is presented as well as the methodology followed. Lastly, the document is

closed with an example based on the IoT use-case on how the app should be

1 See DECODE Website for deliverables. In particular

https://www.decodeproject.eu/publications/uxui-decode-app-development-integrated-

bcnnow
2 https://www.decodeproject.eu/publications/deployment-pilots-amsterdam
3 https://www.decodeproject.eu/publications/deployments-pilots-barcelona
4 http://bcnnow.decodeproject.eu
5 http://dddc.decodeproject.eu
6 http://iot.decodeproject.eu

https://github.com/DECODEproject/decodev2
http://app.decodeproject.eu/
https://play.google.com/store/apps/details?id=com.dribia.decodeapp&hl=ca
https://apps.apple.com/es/app/decode-app/id1451694589
https://www.decodeproject.eu/publications/uxui-decode-app-development-integrated-bcnnow
https://www.decodeproject.eu/publications/deployment-pilots-amsterdam
https://www.decodeproject.eu/publications/deployments-pilots-barcelona
http://bcnnow.decodeproject.eu/
http://dddc.decodeproject.eu/
http://iot.decodeproject.eu/
https://www.decodeproject.eu/publications/uxui-decode-app-development-integrated-bcnnow
https://www.decodeproject.eu/publications/uxui-decode-app-development-integrated-bcnnow
https://www.decodeproject.eu/publications/deployment-pilots-amsterdam
https://www.decodeproject.eu/publications/deployments-pilots-barcelona
http://bcnnow.decodeproject.eu/
http://dddc.decodeproject.eu/
http://iot.decodeproject.eu/

H2020-ICT-2016-1 DECODE D4.14: Final DECODE app release

 4

extended to add additional features. From there, a future roadmap

is laid out, including the possibility of other services such as the pilots developed in

Amsterdam to be integrated in the system.

H2020-ICT-2016-1 DECODE D4.14: Final DECODE app release

 5

Part 1: General framework

General purpose of the app

The DECODE app is intended to be a multilingual piece of software for users to easily

use DECODE functionalities. It represents the merging point of the diverses DECODE

researched technologies, such as cryptographic languages (Zenroom), schemes

(COCONUT), credential management APIs as well as distributed enhanced services

(such as petitions API and IoT encoder, IoT policy store and IoT distributed store). It is

built based on four core principles.

Minimization: The main purpose of the app is the easy and intuitive management of

attributes (aka personal data), credentials (aka proofs over attributes) and external

apps needing them. As such, any other added service not involving attributes or

credentials shall be leveraged externally to the app via appropriate back-ends. Those,

however, must adapt to a common standard to ensure generalization.

Self-containment: Also, in order to preserve users’ privacy, the app does not rely on any

back-end service to work. However, it uses the back-end services of the use cases it is

used for.

Context: The app is built on the principle that users activate the app to interact with

known services, following a user journey based on the paradigm service-app-service.

For more details see the details of the UX design in deliverable (D4.10 UX/UI for DECODE

app development integrated to BCNNow).

Customization: The app implements the requirements for usability for two concrete use

cases, BCNNow and DDDC in three different languages (Catalan, Spanish and English).

Yet, it is designed with the potential to be generalized to other use cases. A fully

fledged example on how to do so is included: the IoT case.

In order to achieve this, we present, in the following section, a general taxonomy of the

elements involved in the app together with its practical implementation to the two

considered use cases. Any service wishing to integrate the DECODE technology, shall

need to perform the same mapping here present for its concrete use case (an example

for the IoT case is provided in the final part of this document).

https://zenroom.org/
https://arxiv.org/pdf/1802.07344.pdf
https://github.com/DECODEproject/credential-issuer
https://github.com/DECODEproject/dddc-petition-api
https://github.com/DECODEproject/iotencoder
https://github.com/DECODEproject/iotpolicystore
https://github.com/DECODEproject/iotstore

H2020-ICT-2016-1 DECODE D4.14: Final DECODE app release

 6

App taxonomy

The DECODE ecosystem can be understood as roughly comprised of 6 main elements,

derived from the ongoing research (see D1.47 First version of DECODE architecture and

D1.58 Intermediate version of DECODE architecture):

- Services/apps: External services that wish to use DECODE technology and

integrate on the ecosystem. Those services can in turn have supporting back-

end services that help them provide the purpose they are built for.

- Attributes: Any kind of data related to a user in the DECODE universe. Those

attributes must be normalized according to a common set of standards, which

we call the Atlas (see below). Also, those attributes can be transformed into

derived attributes, mostly for the purpose of aggregating information. For

example, an age or an age range can be transformed from a birth date, the

same as a city can be derived from a precise location. Also, attributes can be

included into credentials and be authorized (see more below).

- Credentials, Issuers, Verifiers and contracts: Credentials are statements proposed

by users. Those can be signed and hence endorsed by an Issuer and can be

verified by a Verifier (entity that provides proof of the integrity and validity of the

statement, not on its contents). All this is managed through cryptographic

contracts, which can in turn be inspected thanks to Zencode natural language

syntax (see more on deliverable D3.69 Smart Rules Implementation Evaluation of

Prototypes and Integration).

The properties that those elements can have are sketched below in figure 1.

Figure 1: DECODE taxonomy elements and properties

7 https://www.decodeproject.eu/publications/decode-architecture-first-version
8 https://www.decodeproject.eu/publications/intermediate-version-decode-architecture
9 https://www.decodeproject.eu/publications/smart-rules-implementation-evaluation-

prototypes-and-integration

https://www.decodeproject.eu/publications/decode-architecture-first-version
https://www.decodeproject.eu/publications/intermediate-version-decode-architecture
https://www.decodeproject.eu/publications/smart-rules-implementation-evaluation-prototypes-and-integration
https://www.decodeproject.eu/publications/decode-architecture-first-version
https://www.decodeproject.eu/publications/intermediate-version-decode-architecture
https://www.decodeproject.eu/publications/smart-rules-implementation-evaluation-prototypes-and-integration
https://www.decodeproject.eu/publications/smart-rules-implementation-evaluation-prototypes-and-integration

H2020-ICT-2016-1 DECODE D4.14: Final DECODE app release

 7

Relations

Any service or app wishing to integrate itself in the DECODE ecosystem, must fit into the

schematic relationship scheme provided below in figure 2, and explained here.

The starting point is always the user, which can input some attributes into the DECODE

app (potentially personal data). Those attributes must be normalized to conform to a

common specification, called Atlas. The Atlas is a reference (currently implemented in

the form of a json file) that contains the basic information relating services to attributes

and credentials (see more about it below). Also, those base attributes can be

transformed into less informative ones (to preserve a certain degree of anonymity) in

order to be shared with services. For instance, transforming a given address into a city

of residence.

A user can provide certain attributes (a user name, a password, a code, an identity

card) that must be authorized by a recognized Issuer (for instance a city council) to

emit a signed credential. Those credentials can be verified by anyone wishing to

validate their integrity via a Verifier instance. Once a credential is signed, it can be

used to provide proof of statements such as “I am over 18 years old”. This statement,

uses a derived attribute from a birth date, and is signed by an Issuer. All this process is

governed via cryptographic contracts, written in Zenroom language.

Once a user has credentials, it can use those credentials to make use of the federated

services/apps, which can optionally rely on supporting services (all outside of the app).

As a service is added to the DECODE ecosystem, it can declare its link to other existing

services, so users can benefit from both (for instance, a new service to visualize data

from using another declared federated application).

Figure 2: DECODE relations among elements

H2020-ICT-2016-1 DECODE D4.14: Final DECODE app release

 8

The diagrams above might look a bit abstract, but they are an

essential part of the system. Identifying and placing different elements into them makes

the adaptation of any given service to the DECODE ecosystem much easier. The

strength of the above schema relies at the same time on its simplicity and its generality.

On the one hand, it allows non expert users to rapidly identify the needed pieces and

relations to take into account when adapting a service to DECODE. On the other, the

relation between services, attributes and credentials is broad enough so a variety of

real world scenarios can be fitted into it. In the following, we describe the DDDC and

BCNNow pilot adaptations to the above proposed schema to exemplify the

aforementioned strengths and give a bit of practical explanations about the taxonomy.

Pilot mapping: DDDC & BCNNow

The above relations must be mapped to actual existing instances in the real world for

any service or app wishing to integrate itself into the DECODE ecosystem. Below, we

provide explicit mappings of those instances for the BCNNow and DDDC use cases,

belonging to the pilots developed in Barcelona.

Figure 3: DECODE relations among elements mapped to the DDDC and BCNNow case

http://bcnnow.decodeproject.eu/
http://dddc.decodeproject.eu/

H2020-ICT-2016-1 DECODE D4.14: Final DECODE app release

 9

In these use cases, users are the citizens of Barcelona. They input their address, age and

gender into the app and the app transform those values into approximate locations

and age ranges (derived attributes). The users participate into the DDDC deliberation

process, and are given a unique participatory code to be able to support petitions

displayed on the site.

This code is used to obtain a credential, signed by the DECODE credential issuer (see

Technological implementation section for details below) that validates the statement “I

can participate to support petition X”, being X a petition chosen by the user. The

credential, can be presented to any instance wishing to verify it, which can be done at

a public endpoint of the credential issuer itself (currently implemented as

http://credentials.decodeproject.eu). At the moment of asking for a credential, the

user is given the option to share derived data (gender, blurred address and age range)

with the credential issuer for statistical purposes, hence effectively building a data

commons10 for the improvement of the system.

Once the user is in possession of the credential, it can use it for two actions in two

different apps or services (which are linked):

1. It can support a petition chosen from the DDDC website. To do so, DDDC uses

the supporting service that manages the petitions support in a distributed way

over a ledger (see deliverable D3.10 Implementation of Blockchain platform and

ABC in DECODE Pilots).

2. It can use the same credential to log into BCNNow website. Upon doing so, the

site also asks for some derived data that the user can share in order to

personalize her experience.

All those actions can be done via the app, either by clicking on a link with the

appropriate handle while being on a mobile environment (decodeapp://…), or by

scanning a QR code that the app can recognize. Below, we provide the technological

implementation details that explain the entire process.

The syntax for QR compatible applications is specified in the technical documentation

of the app, which is hosted on its public repository.

10 By Data Commons we refer to an aggregated dataset of donated information by users,

which (a) respects their individual privacy while at the same time (b) allows its exploitation for

public/common good objectives such as optimizing a platform to their user base or detecting

excluded profiles and understanding better the city by mapping urban problems among others.

http://credentials.decodeproject.eu/
http://petitions.decodeproject.eu/
https://desk.dyne.org/s/ss2iMbu5Gd8Lchr
https://desk.dyne.org/s/ss2iMbu5Gd8Lchr
https://desk.dyne.org/s/ss2iMbu5Gd8Lchr
http://bcnnow.decodeproject.eu/
https://github.com/DECODEproject/decodev2/tree/master/docs
https://github.com/DECODEproject/decodev2/tree/master/docs

H2020-ICT-2016-1 DECODE D4.14: Final DECODE app release

 10

Part 2: Technological

implementation

Development methodology

The app has been developed using agile methodology in concrete, a Scrum flavor. The

development has been organized into sprint of 10 able days each, with allocation of

points per task using a Fibonacci scheme.

For each sprint, 70 points were allocated and executed. In parallel, UX design and user

testing sessions were carried out and its conclusions used to inform design and

development of the app. For each sprint, regular meet-ups of the team were done and

a final presentation of results on day 10 was carried out with the presence of the Tech

leader of the project, Dyne foundation. This process was combined with the regular

tech stand-up meets every week with other project partners, to ensure integration of all

involved components on which the app relies.

Tech stack

The DECODE APP is a piece of software developed from scratch, in React Native,

without dependencies on third party servers and using a "stateless, pure functional

component" paradigm, where all application state is centralized in the Redux store.

The DECODE depends on the following technologies:

- Redux for state management

- Reselect for cacheable (memoized) access to the state

- Redux Thunk for asynchronous action dispatching

- Redux Persist for saving state to permanent storage

- AsyncStorage from React Native Community for native key-value permanent

storage

- Plain Fetch API for communication with services

- React Navigation for navigation between screens and menus

- React Native Vector Icons as icon library set

- Styled Components for styling and theming

- Ramda for utilities

- moment for date & time handling

- react-i18next for multilanguage

- react-native-sentry for sending crash logs (requires a Sentry server)

- react-native-splash-screen to maintain the splash screen while JS is loading

- react-native-onboarding-swiper for the app intro caroussel

- react-native-walkthrough-tooltip for the screen tooltips walkthrough

https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Fibonacci_scale_(agile)
https://www.dyne.org/

H2020-ICT-2016-1 DECODE D4.14: Final DECODE app release

 11

- react-native-camera for QR scanning

- react-native-date-picker as cross platform component for date selection

- react-native-render-html to support HTML coming from application description

fields

- react-native-loading-spinner-overlay as loading indicator

- react-native-keyboard-aware-scroll-view to fix layout issues when a

KeyboardAwareView has a ScrollView inside

Additionally, there are other development dependencies:

- yarn for dependency management

- babel for code transpiling

- eslint and prettier for code style

- jest for unit testing

- fastlane for store deployment automation

- sentry for crash reporting

Finally, the app depends on Zenroom for all cryptographic operations, via its handlers,

which is the language specifically developed for the DECODE project by our partner

Dyne.

Please note that further technical details of the app can be found on the repository

documents.

Below, we provide a general reference of all the technological elements involved in

the implementation of the DECODE taxonomy.

App

Conceptually, the components of the system are simple to understand: An app,

different sources of data, a credential service and a set of external services.

https://zenroom.org/
https://github.com/DECODEproject/decodev2/blob/master/README.md
https://github.com/DECODEproject/decodev2/blob/master/README.md

H2020-ICT-2016-1 DECODE D4.14: Final DECODE app release

 12

Figure 4: DECODE App basic elements

Sources of data

Those can be either manual input by user (current implementation), or imported from

other services. The key point is that the data used in the DECODE ecosystem need to

respond to a common Atlas (see below).

Credential service

This service is already implemented and dockerized here, and has a domain

(credentials.decodeproject.eu). You can find its documentation here. It issues

certificates with given credentials interacting with the App. It also stores information

relating to the users that asked for a credential for statistical purposes in an aggregated

way.

Atlas

This is the service where all the conceptual objects of the DECODE universe exist which

maps to the app taxonomy. It has the form of an internal JSON that could later be

externalized in the form of an online API endpoint. The key characteristic of the Atlas is:

- No synonyms can exist in it (each object cannot have two names).

- It can be extended by adding new elements that do not exist in it, but its original

elements cannot be modified without the agreement of all the parties of the

project.

The use of the Atlas is capital as it defines the type of attributes (data) that DECODE

can handle. This in turn determines the credential logic, the zenroom contracts and also

the configuration of the external services.

The structure of the Atlas is self-explanatory from the JSON itself, but essentially contains

three elements:

- Attributes declaration: All types of attributes that the app can understand are

declared there, they can be of various types (float, enum, integer, string, bins)

and can be either original or derived.

- Service declaration: All services (call applications in the front-end) are declared

here, together with their reference websites, APIs as well as attributes that the

service uses in the context of the DECODE project.

- Translations: Finally, all translations specific to the attributes and services are also

included in the doc.

The Atlas is currently implemented as a plain JSON, but could be replaced by a fully

fledged ontologies API external service/reference. Additional details on the ATLAS can

be found in the technical documentation.

https://github.com/DECODEproject/decodev2/tree/e61f373b7a2801a7f7741c669e73c94aa45642da/src/api/atlas
https://github.com/DECODEproject/dddc-credential-issuer
http://credentials.decodeproject.eu/
https://pad.dyne.org/code/#/2/code/edit/qA7Pf4d+sQYBP2MqYgOU0isN/
https://github.com/DECODEproject/decodev2/blob/master/src/api/atlas/atlas.json
https://github.com/DECODEproject/decodev2/tree/master/docs/atlas.md

H2020-ICT-2016-1 DECODE D4.14: Final DECODE app release

 13

Service stack

Roughly, any service is composed of three elements:

- A visualization service.

- A website that explains and manages the service. All non strictly personal steps

and actions can run there.

- Any microservices to support the service.

Below, we provide the mapping used for the DDDC & BCNNow use cases.

DDDC website

In our case we use DDDC, which is a DECIDIM instance. The website is up and running. It

is written in Ruby and fully dockerized (see repository). To set-up a petition, it interacts

with the APP, as well as to the credential and petition services. All via documented

OpenAPI-dependent specs. The website has a Graphql API endpoint that accepts

queries.

Petition service

For the DDDC case we use the petitions module API (petitions.decodeproject.eu). The

service is owned by Dyne, it is hosted up and running. It provides interface for secure

petition handling, backed on a distributed ledger system.

BCNNow

BCNNow (bcnnow.decodeproject.eu and repository) is used by the Barcelona pilots to

visualize data. It is owned by Eurecat and currently running. It allows guest log-in (no

credentials needed), as well as personalized views with appropriate credentials for both

the IoT and DDDC case. Upon log-in, it also allows users to share data to obtain

personalized dashboard views.

http://dddc.decodeproject.eu/
https://github.com/DECODEproject/DDDC-instance
https://github.com/DECODEproject/DDDC-instance
https://github.com/DECODEproject/credential-issuer
https://github.com/DECODEproject/dddc-petition-api
https://github.com/DECODEproject/dddc-petition-api
http://petitions.decodeproject.eu/
http://bcnnow.decodeproject.eu/
https://github.com/DECODEproject/bcnnow

H2020-ICT-2016-1 DECODE D4.14: Final DECODE app release

 14

Part 3: Future roadmap
In the user sessions carried to flesh out the app structure, a recurring demand by users

was the adaptation to the DECODE ecosystem to more apps and services. In this

closing section, we thus add all the necessary indications on how to do so, focusing on

the remaining use case in Barcelona, the IoT pilot.

This example might be used to perform a tutorial session on the DECODE Tech

Symposium, related to the upcoming deliverable D5.8 DECODE Developers

Conference: Opening up the DECODE App and tools to third party developers and

entrepreneurs. It will also be featured on the App website and repository. The example

and the mentioned sessions will be used to engage external developers into adapting

services and apps into the decode ecosystem. Also, it must be noted that currently in

the world there are more than 60 running instances of the DECIDIM software, of which

DDDC pilot is an instance. Hence, with minimal work the results of the BCN pilots could

be scaled to reach vast communities, including also the extension of BCNNow to other

municipalities (being it fully general and open source).

https://decodeproject.eu/events/agenda
https://decodeproject.eu/events/agenda
http://app.decodeproject.eu/
https://github.com/DECODEproject/decodev2
https://decidim.org/

H2020-ICT-2016-1 DECODE D4.14: Final DECODE app release

 15

Adding new services to the app

The general steps to add a service to the app are simple and listed below. As stated,

the app has been developed with the idea that the last mile must be run by the service

wishing to be integrated. Once a service is fully up and running, our estimate is that with

good knowledge of react programming, no more than 5 days of coding work are

needed for the task (excluding development of back-end services).

The general scheme to adapt a service or app to the DECODE app is as follows:

1. Conceptual work: The app wishing to integrate to the DECODE app ecosystem

must first identify the main elements of interaction and adapt them to the

DECODE taxonomy.

2. Back-end development: All the back-end services for the app must be made

ready, with available end-points and programmatic interaction via documented

APIs. At this point, client code must be written for the app to be able to consume

those services.

3. Atlas declaration: The use case must be integrated into Atlas. Identifying the

app/service name, the data used, its transformations as well as the auxiliary

back-end services used. If any data transformation from basic user attributes is

needed, then the functions for the app to make the transformation (the

converters) must be written. Also, the proper zenroom contracts to use must be

added to the source code in the relevant place. Lastly, the code for the back-

end services’ API clients must also be included in the app.

4. Business logic: In this step, the state of the app and its business logic must be set,

which makes use of (a) the app internal attribute, credential and service

management tools and (b) the earlier written API clients code developed in step

2.

5. Screen logic: This step declares the screens for the user to perform the actions

needed within the DECODE app to integrate the service. It may use the

proposed templates or additional ones. In those screens, the business logic

defined and implemented in step 4 is used.

6. Action triggers: This step declares the actions that will trigger the DECODE app

activation, either via a handle (on mobile navigation) or a QR code scan

conforming to the specifications.

7. Styling: If wishing to change the theme, the adequate file can be adapted.

8. Testing and deployment to stores: Once all the integration is complete, it is

important to pass the testing suite as a prior step to publication in stores.

9. Contributing: Once all the earlier steps are fulfilled, a PR may be submitted to the

main repository so the fork can be merged into the project.

Below we provide details on the first phase of the process: The conceptual mapping of

the different components. To obtain specific details about the actual code changes

needed to perform the implementation, we refer the reader to the appropriate section

https://github.com/DECODEproject/decodev2/blob/master/docs/extending.md

H2020-ICT-2016-1 DECODE D4.14: Final DECODE app release

 16

in the repository of the app. Two examples are provided there, a

simple adaptation to a log-in for a generic website, and a more advanced one to

integrate the IoT case.

Pilot mapping: IoT

The IoT service taxonomy is easy to map to the earlier defined taxonomy, and is done in

the figure 5 below.

Figure 5: DECODE relations among elements mapped to the IoT and BCNNow case

Basically, the use case is as follows: Citizens want to organize themselves in communities

of neighbors. Each citizen owns one or more than one sensor and wishes to generate

several versions of sensor readings. One coarse grained that the general public can

access (community “public”) and one for the internal community (community “X”). The

rules of sharing for the internal community are pre-defined, and the authorization to join

a community is given via a code, which the authorized users know from external

sources to the DECODE app (for example, an in-person meeting).

Hence, to start sharing data, the users need:

- A sensor configured to send data to an endpoint with an identifier.

- A code allowing them to be authorized to obtain a credential that proves they

belong to a given community.

- A website where people can visualize the different versions of the datasets,

depending on the credentials used.

While apparently its use case is different from the DDDC one, as we will see, most of the

developed services can be reused. In particular, we will reuse the logic of log-in to

https://github.com/DECODEproject/decodev2/blob/master/docs/extending.md

H2020-ICT-2016-1 DECODE D4.14: Final DECODE app release

 17

BCNNow, as well as the logic of obtaining a credential from the very

same credential issuer that the DDDC pilot uses. The steps to do are detailed below:

- Obtaining a credential ("I belong to community X") map the ones to obtain a

credential to participate to petitions in DDDC.

- Setting up the supporting services (StreamEncoder, Policy Store, IoTStore) those

are new steps, most of which are managed by the PolicyStore micro-service.

- Linking to the visualization service website (BCNNow): Those are already

implemented in the app.

Importantly, the service is already operating using a web-app interface for users, and it

has been satisfactory tested with users both on the feasibility, technological and

usability fronts (for technical details see D3.911 IoT privacy-enhancing data sharing:

integration with pilot Infrastructures).

Back-end development

The main flow followed can be seen in detail in the technical document in the

repository here. Its elements are presented below.

Smartcitizen website

The smartcitizen website is the base website of the pilot. It has a repo with the

dockerized API and an API. The entry point for the pilot is this page.

Stream encoder

This is the piece of code that encodes the streams of IOT data published by the sensors.

Owned by Thingful, deployed and open source.

Policy service

This is the service that basically provides policies to the encoder. It is developed by

Thingful and open source.

Data store

This is the service that store the encrypted data streams. It is deployed and open source

and owned by Thingful.

Other technical steps
Once reached this point where (a) the conceptual work is done and (b) the back-end

services are ready, the missing step is the actual implementation. Logically, the more

11 https://www.decodeproject.eu/publications/iot-privacy-enhancing-data-sharing-integration-

pilot-infrastructures

http://iot.decodeproject.eu/
https://www.decodeproject.eu/publications/iot-privacy-enhancing-data-sharing-integration-pilot-infrastructures
https://github.com/DECODEproject/decodev2/blob/master/docs/iot_flow.md
http://www.smartcitizen.me/
https://github.com/fablabbcn/smartcitizen-api
http://api.smartcitizen.me/
http://start.decode.smartcitizen.me/
https://github.com/DECODEproject/iotencoder
https://github.com/DECODEproject/iotpolicystore
https://github.com/DECODEproject/iotstore
https://www.decodeproject.eu/publications/iot-privacy-enhancing-data-sharing-integration-pilot-infrastructures
https://www.decodeproject.eu/publications/iot-privacy-enhancing-data-sharing-integration-pilot-infrastructures

H2020-ICT-2016-1 DECODE D4.14: Final DECODE app release

 18

diverse a use case is, the more work it might involve. However, the

presented paradigm of the DECODE app managing credentials, attributes and services

is very flexible and can accommodate a wide variety of use cases. Hence, expected

development work is small. For the IoT case, the specific steps to follow can be

observed in the detailed document provided in the repository of the App.

https://github.com/DECODEproject/decodev2/blob/master/docs/extending.md

H2020-ICT-2016-1 DECODE D4.14: Final DECODE app release

 19

Conclusion

This document accompanies a keystone deliverable of the DECODE project, embodied

in the app that allows users easy interaction with the developed project framework. This

app effectively gathers and merges the team effort of many partners in the consortium,

and synthesizes into a real, usable product the learnings derived from the research

carried out in a variety of fronts.

The publication of the repository, the first complete version of the DECODE App as well

as the accompanying website which explains the app technology for non advanced

users mark an important step in the project. Milestones MS13 (DECODE app final

deployment), MS14 (DECODE app website) and MS15 (DECODE final distributed

architecture) make the DECODE components ready to be distributed and adopted by

a growing community of developers, to which it will be presented in the upcoming

DECODE Tech Symposium, to be held in Torino on the 5th and 6th of November and

related to deliverable D5.8 DECODE Developers Conference: Opening up the DECODE

App and tools to third party developers and entrepreneurs.

The contributions of the different branches of the DECODE project work packages and

partners have allowed to build a piece of open and free software that is preliminary

validated by users, effectively respects their privacy, and is made modular enough so

service can federate with it. The challenges were big, but we believe we have built an

example that not only works incorporates state of the art cryptography, but also

implements user demands into real world pilots.

The app does implement solutions for the pilots while preserving a general framework

and philosophy allowing the work to be carried out beyond the particular cases which

have been envisaged for it. In particular, other uses such as the ones designed and

implemented in the Amsterdam pilots, presented in D5.5 (Deployment of Pilots in

Amsterdam), or the final adoption by a large platform such as SmartCitizen as well as

the many (60+) instances of the DECIDIM software active throughout the world provide

a promising landscape for further development. Last but not least, the implementation

of an IoT scheme that effectively makes possible data sharing at different granularities,

thus enabling real data sovereignty, and its implementation embodied here, marks yet

another important feat for the project. Such an event also opens a world of possibilities

for privacy aware IoT solutions in social and industrial environments.

At this point and as we approach the end of the project, we can say that most of its

ambitious objectives have been fulfilled. Now, it is up to the community to adopt and

extend a service which can potentially serve many different scenarios, as exemplified

with the actual implementation of the project pilots.

http://app.decodeproject.eu/
http://smartcitizen.me/
http://www.decidim.barcelona/

