

D4.12
Smart Contracts for Data

Commons integrated with

GDPR compliant legal

rules and tested in

pilots

H2020–ICT-2016-1 DECODE D.4.12 Smart Contracts for Data

 Commons integrated with GDPR compliance

 2 legal rules and tested in pilots

Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

D4.12 Smart Contracts for Data Commons integrated with GDPR compliant legal

rules and tested in pilots

Version Number: V1.0

Lead beneficiary: DYNE.ORG

Due Date: 30/09/19

Author(s): Andrea D'Intino, Denis Roio (DYNE)

Editors and reviewers: Oleguer Sagarra (DRIBIA), Jim Barrit (TW), Eleonora

Bassi (POLITO)

Dissemination level: PU

PU Public X

PP Restricted to other programme participants (including the

Commission Services)

RE Restricted to a group specified by the consortium (including the

Commission Services)

CO Confidential, only for members of the consortium (including the

Commission Services)

Approved by: Francesca Bria (DECODE Project Coordinator)

Date: 15/10/2019

This report is currently awaiting approval from the EC and cannot be not

considered to be a final version.

H2020–ICT-2016-1 DECODE D.4.12 Smart Contracts for Data

 Commons integrated with GDPR compliance

 3 legal rules and tested in pilots

Table of Contents

Introduction 4

Multiplatform environment 5

Zencode memory model 6

The “Given” phase 7

The When phase 8

The Then phase 8

The “Coconut” flow 9

GDPR and security in the pilots 11

DDDC Pilot 11

DDDC Pilot smart contracts 13

IoT/BCNNow Pilot 15

18+ Pilot 17

Gebiedonline Pilot 18

Conclusions 19

H2020–ICT-2016-1 DECODE D.4.12 Smart Contracts for Data

 Commons integrated with GDPR compliance

 4 legal rules and tested in pilots

Introduction

An important outcome in DECODE is having developed and deployed a

reliable virtual machine (Zenroom) that can execute smart-contracts

written in a human comprehensible language (Zencode) so that

participants (user data providers) can consciously define what use is

made of their data by services (user data recipients) aggregating and

processing them.

We have developed the Zenroom virtual machine and the Zencode language

to securely process signed credentials and blind proofs to comply not

only with blockchain architectures, but also with privacy regulations

as GDPR and in general following privacy by design principles (D1.3).

Here we make a brief overview of the tools and then demonstrate how

they apply to specific pilot cases with an analysis of the privacy

implications that references the GDPR and in particular findings of

DECODE's deliverables (D1.6 and D1.8) and reference to pilots in

Amsterdam (D5.5) and Barcelona (D5.6).

The technical delivery of this demonstration consists in the release

of Zenroom 1.0.0 and its full documentation attainable at

dev.zenroom.org along with the infrastructure running for the pilots

and the public workshops in which we provide a public demonstration of

this setup.

https://dev.zenroom.org/

H2020–ICT-2016-1 DECODE D.4.12 Smart Contracts for Data

 Commons integrated with GDPR compliance

 5 legal rules and tested in pilots

Multiplatform environment

All the smart contracts used in DECODE are executed by Zenroom: its high

portability has played a pivotal role in the development of the three pilots

using it.

Each of the three pilots using Zenroom (DDDC, IoT/BCNNow, 18+) required

software written for different platforms (Linux AMD64, Windows AMD64, MacOS

AMD64, Android ARMHF, iOS ARMHF) in different programming languages (Python,

Go, JavaScript). For this purpose, different Zenroom’s bindings have been

developed and a continuous integration platform has been setup to guarantee

automated advanced testing and code building on a daily base, using Dyne.org

Jenkins platform
1
:

Figure 1: Dyne.org’s CI platform

1 Dyne.org CI: https://sdk.dyne.org:4443

https://sdk.dyne.org:4443/

H2020–ICT-2016-1 DECODE D.4.12 Smart Contracts for Data

 Commons integrated with GDPR compliance

 6 legal rules and tested in pilots

Zencode memory model

The Zenroom cryptographic virtual machine includes the interpreter of

“Zencode”, a smart-contracts a programming language inspired by the

“Behavioral Driven Development” (BDD)
2
 and the LANGSEC

3
 paradigms,

aimed to be understandable to English speaker with no software

development skills
4
. The Zencode domain specific language has been

develop to enable lawyers, business men or non-programmers in general,

to write or understand smart contracts, at the same time to allow

developers to get closer to end users and provide an effective way to

accelerate development.

Zenroom processes Zencode as a finite state machine, operating in

three phases, to each correspond three separate blocks of code and

three separate memory areas, sealed by security measures
5
. If any

single line in a Zencode contract fails, Zenroom stops executing and

returns the error.

The first line of a smart-contract written in Zencode must include the

version of Zenroom needed to process it, the second line must include

the definition of the “Scenario”, which indicates what set of commands

will be used, examples of valid scenarios are “simple” and “coconut”.

Then the core of the smart-contract ensues, where the three phases are

introduced by the prefixes “Given”, “When” and “Then”, followed by

commands and variables to compose statements such as:

Rule check version 1.0.0

Scenario simple: Decrypt the message with the password

Given I have a valid 'secret message'

When I write 'my secret word' in 'password'

and I decrypt the secret message with 'password'

Then print as 'string' the 'text' inside 'message'

2 BDD introduction, (North):

https://web.archive.org/web/20150901151029/http://behaviourdriven.org/
3 LANGSEC introduction: http://langsec.org/

4 Smart contracts for the English speaker (DECODE Blog):

https://decodeproject.eu/blog/smart-contracts-english-speaker
5 Zencode documentation: https://dev.zenroom.org/zencode/

https://web.archive.org/web/20150901151029/http:/behaviourdriven.org/
http://langsec.org/
https://decodeproject.eu/blog/smart-contracts-english-speaker
https://dev.zenroom.org/zencode/

H2020–ICT-2016-1 DECODE D.4.12 Smart Contracts for Data

 Commons integrated with GDPR compliance

 7 legal rules and tested in pilots

and print as 'string' the 'header' inside 'message'

The three phases operate as following:

The “Given” phase

In this phase the input is read from the input, loaded in memory,

processed and validated. Zenroom can take input from the stdin
6
 or it

accepts two files as input using the interchangeable parameters “-a”

and “-k”.

After parsing, if the input contains structured data, the data

structure is compared to the object expected based on the definition

of the command in the line, embedded in the Zencode parser. If the

data structure of the input matches the data structure expected, the

data content can be further validated if further conditions are

implemented. For example, in the fourth line of smart-contract:

Rule check version 1.0.0

Scenario 'simple': Alice signs a message for Bob

Given that I am known as 'Alice'

and I have my valid 'keypair'

When I write 'This is my signed message to Bob.' in 'draft'

and I create the signature of 'draft'

Then print my 'signature'

and print my 'draft'

Zenroom expects to receive a “valid ‘keypair’” tagged with “Alice” as

input, therefore it will try to match all the input with the data

structure:

6 Stdin, Wikipedia:

https://en.wikipedia.org/wiki/Standard_streams#Standard_input_(stdin)

https://en.wikipedia.org/wiki/Standard_streams#Standard_input_(stdin)
https://en.wikipedia.org/wiki/Standard_streams#Standard_input_(stdin)

H2020–ICT-2016-1 DECODE D.4.12 Smart Contracts for Data

 Commons integrated with GDPR compliance

 8 legal rules and tested in pilots

{"Alice":

{"keypair":

{"private_key": "u64:Yv19MT-yQFC1rm5sRLw6PW6l9BV6DPKRYmolKCn_Q3k",

"public_key":

"u64:BC0eyWOzCbBHvgkA0ZkgXeRFRwr5N2j2h4Wze48yjg_tKqRGcXT37ppC5CTRb4mJk1O5Q

5x54-YjSP-xMK_LtLY5eGDcnVvPD-COTiZ47PUAiGtuOUUsS0OzxSGft0aJ-A" } } }

Any error in the parsing, processing and matching of the input will

stop the computation and result in teardown of Zenroom. The “Given”

phase does not process or execute commands.

The When phase

In the “When” phase the Zenroom virtual machine moves the data

imported in the “Given” phase to its own, separated memory block. This

phase allows to process and execute commands: since Zenroom’s memory

model makes it completely isolated from the OS, the “When” phase

cannot load any input from anywhere else than the “Given” phase,

meaning that it will exclusively be able to manipulate the data loaded

from the “Given” phase (e.g.: it will not be able to a generate a

random number, if a random seed has not been loaded in the “Given”

phase).

In the “When” phase, Zencode commands can be passed in an arbitrary

sequence, allowing for computationally complex manipulation. The list

of valid Zencode commands can be extended by modifying existing

scenarios or creating new ones, using Lua
7
 scripts to define the

interpretation of commands, where along with the standard Lua commands

the developer can use a set of cryptographic functions which rely on

the cryptographic primitives contained in the Milagro
8
 library.

The Then phase

In the “Then” phase, the output of the “When” phase is moved to a new

memory block, where the whole data (or fragments can) be entirely (or

selectively) printed in multiple steps, allowing for a formatting of

7 The Lua scripting language: https://www.lua.org/

8 Apache Milagro crypto library: https://github.com/apache/incubator-milagro-crypto

https://www.lua.org/
https://github.com/apache/incubator-milagro-crypto

H2020–ICT-2016-1 DECODE D.4.12 Smart Contracts for Data

 Commons integrated with GDPR compliance

 9 legal rules and tested in pilots

the data computed in the “When” phase, which will then be printed to

stdout
9
.

The Zencode processing memory structure looks like

Figure 2: Zencode memory management scheme

The “Coconut” flow

Zenroom implemented the zero-knowledge proof flow described in the

“Coconut” paper
10
 written by Sonnino et al. at UCL.

9 Stdout, Wikipedia:

https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)

10 ” Coconut: Threshold Issuance Selective Disclosure Credentials with Applications to

Distributed Ledgers” (Sonnino et al.) : https://arxiv.org/pdf/1802.07344.pdf

https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://arxiv.org/pdf/1802.07344.pdf

H2020–ICT-2016-1 DECODE D.4.12 Smart Contracts for Data

 Commons integrated with GDPR compliance

 10 legal rules and tested in pilots

The Coconut flow allows the “holder” (or “participant” or more

generically the “user”), to cryptographically sign objects, using a

digital credential, signed by a trusted authority (for example a

municipality or more generically someone who is known and trusted by a

community), which gets anonymized via randomization at each use

(generating a “proof”).

Therefore, using of the Coconut zero-knowledge proof, allows a user to

be authenticated even though none of the data, produced and processed

in the flow, do contains personal data, thus falling in the “privacy

by default” GDPR scenario, which makes the application GDPR compliant

without further development.

The Coconut flow can be represented with the scheme:

Figure 3: Coconut Zero-knowledge proof flow

H2020–ICT-2016-1 DECODE D.4.12 Smart Contracts for Data

 Commons integrated with GDPR compliance

 11 legal rules and tested in pilots

GDPR and security in the pilots

Making the usage smart contracts compliant with GPDR depends on

several technical factors which in turn differ greatly between

different pilots, therefore the analysis will be centered around the

pilot’s use cases.

DDDC Pilot

The DDDC Pilot allows citizens to digitally sign petitions using an

app
11
, the signature is then stored onto a blockchain. The article 17,

par.1
12
 of GDPR defines the “right to be forgotten” and states:

The data subject shall have the right to obtain from the controller

the erasure of personal data concerning him or her without undue

delay and the controller shall have the obligation to erase personal

data without undue delay […]

Since blockchains form an immutable historic record
13
, where nor the

controller nor anybody will singlehandedly be able to erase data,

their usage to store personal data would breach the article 17. For

this reason, choses were made in the architecture and the flow to

completely avoid the storing of personal data, implementing “privacy

by design” and “privacy by default” principles as highlighted in the

article 25
14
.

The DDDC Pilot relies on the cryptography described in the “Coconut”

paper
15
 and implemented in Zenroom

16
 where they are executed by smart-

11 DECODE app on the Android store:

https://www.google.com/url?q=https://play.google.com/store/apps/details?id%3Dcom.dri
bia.decodeapp%26hl%3Den_US&sa=D&ust=1570192213728000&usg=AFQjCNF_VwP
dGzoRZx6d2StxHthOxi-pnA
12 Article 17 of GDPR: https://eur-lex.europa.eu/legal-

content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e2606-1-1

13 ”CONCEPTUALIZING BLOCKCHAINS: CHARACTERISTICS & APPLICATIONS”,

(Sultan et alt.: par, 2.1) https://arxiv.org/ftp/arxiv/papers/1806/1806.03693.pdf
14 Article 25 of GDPR: https://eur-lex.europa.eu/legal-

content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3022-1-1

15 ” Coconut: Threshold Issuance Selective Disclosure Credentials with Applications to

Distributed Ledgers” (Sonnino et al.) : https://arxiv.org/pdf/1802.07344.pdf
16 Source code of the implementation of the Coconut cryptography algorithms in Zenroom:

https://github.com/DECODEproject/Zenroom/blob/master/src/lua/zencode_coconut.lua

https://www.google.com/url?q=https://play.google.com/store/apps/details?id%3Dcom.dribia.decodeapp%26hl%3Den_US&sa=D&ust=1570192213728000&usg=AFQjCNF_VwPdGzoRZx6d2StxHthOxi-pnA
https://www.google.com/url?q=https://play.google.com/store/apps/details?id%3Dcom.dribia.decodeapp%26hl%3Den_US&sa=D&ust=1570192213728000&usg=AFQjCNF_VwPdGzoRZx6d2StxHthOxi-pnA
https://www.google.com/url?q=https://play.google.com/store/apps/details?id%3Dcom.dribia.decodeapp%26hl%3Den_US&sa=D&ust=1570192213728000&usg=AFQjCNF_VwPdGzoRZx6d2StxHthOxi-pnA
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e2606-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e2606-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e2606-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e2606-1-1
https://arxiv.org/ftp/arxiv/papers/1806/1806.03693.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3022-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3022-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3022-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3022-1-1
https://arxiv.org/pdf/1802.07344.pdf
https://github.com/DECODEproject/Zenroom/blob/master/src/lua/zencode_coconut.lua

H2020–ICT-2016-1 DECODE D.4.12 Smart Contracts for Data

 Commons integrated with GDPR compliance

 12 legal rules and tested in pilots

contracts
17
 written in Zencode

18
. Then, the security of the processing

required by Article 32 of the GDPR is ensured.

More specifically the data flow of the DDDC Pilot generates, stores

and processes only:

- A cryptographic keypair for the “citizen”, generated from a

random seed by a smart contract executed by an instance of

Zenroom running on a mobile device and invoked via a system call
19

by the “DECODE app
20
”.

- A cryptographic keypair for the “issuer”, generated from a random

seed by a smart contract executed by an instance of Zenroom

running on a web service invoked via a system call
21
 by the

“Credential issuer API
22
”.

- The unique id of the petition signed, as it was assigned by the

“DDDC Dashboard
23
”.

- A “SHA-512
24
” hash of the petition text, performed by Zenroom.

To summarize, compliance to the articles 5, 17, 25, and 32 of GDPR is

guaranteed by:

- In no point of the whole DDDC pilot flow is any personal

information stored neither on a blockchain nor in any database

system. Aggregated and anonymized data is stored if the user

opts-in to do so.

17 Complete list of the Zencode written smart contracts that operate the DDDC flow, each

.zen file is a smart contract:
https://github.com/DECODEproject/Zenroom/tree/master/test/zencode_coconut
18 Zencode developer’s documentation and how-to’s: https://dev.zenroom.org/zencode

19 A “system call” is a technique for an application to execute (an)other application(s) by

running a command parsed by a component of the underlying operative system. More info:
http://faculty.salina.k-state.edu/tim/ossg/Introduction/sys_calls.html
20 Source code of the DECODE App “V2”: https://github.com/DECODEproject/decodev2

21 A “system call” is a technique for an application to execute (an)other application(s) by

running a command parsed by a component of the underlying operative system. More info:
http://faculty.salina.k-state.edu/tim/ossg/Introduction/sys_calls.html
22 Source code of the Credential issuer API:

https://github.com/DECODEproject/credential-issuer
23 Source code of the DDDC Dashboard: https://github.com/DECODEproject/DDDC-

instance
24 ”On the Secure Hash Algorithm family”, Penard and Werkhoven:

https://web.archive.org/web/20160330153520/http://www.staff.science.uu.nl/~werkh108/docs/st
udy/Y5_07_08/infocry/project/Cryp08.pdf

https://github.com/DECODEproject/Zenroom/tree/master/test/zencode_coconut
https://dev.zenroom.org/zencode
http://faculty.salina.k-state.edu/tim/ossg/Introduction/sys_calls.html
https://github.com/DECODEproject/decodev2
http://faculty.salina.k-state.edu/tim/ossg/Introduction/sys_calls.html
https://github.com/DECODEproject/credential-issuer
https://github.com/DECODEproject/DDDC-instance
https://github.com/DECODEproject/DDDC-instance
https://web.archive.org/web/20160330153520/http:/www.staff.science.uu.nl/~werkh108/docs/study/Y5_07_08/infocry/project/Cryp08.pdf
https://web.archive.org/web/20160330153520/http:/www.staff.science.uu.nl/~werkh108/docs/study/Y5_07_08/infocry/project/Cryp08.pdf

H2020–ICT-2016-1 DECODE D.4.12 Smart Contracts for Data

 Commons integrated with GDPR compliance

 13 legal rules and tested in pilots

- No other data is stored that can be paired with any of the data

stored in the DDDC flow, which can lead to identification of the

natural person, providing full anonymization instead of

pseudonymization as defined in Article 4, par. 5
25
 GDPR.

- Reaching beyond the provisions of GDPR, the DDDC flow insure non-

traceability of the citizen, should the citizen happen to use the

same credential
26
 in more than one occasion, by allowing the usage

of the randomized “Proof” instead of the unique “Credential”, as

described in the “ProveCred” and “VerifyCred” algorithms of the

“Coconut” paper.

The platform is however built to be extendable and petitions or

services that require storing of personal data on a database can be

configured.

DDDC Pilot smart contracts

The smart contracts used in the latest version of DDDC pilot have been

integrated in the Zenroom github repository
27

Examples of the smart contracts are:

1) Generation of citizen’s keypair28:

Scenario coconut: credential keygen

Given that I am known as 'Participant'

When I create the credential keypair

Then print my 'credential keypair'

2) Verify the anonymized “Proof” of the citizen’s credential29:

25 Article 4 of GDPR: https://eur-lex.europa.eu/legal-

content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e1489-1-1

26 A credential is a cryptographical object issued by the “Credential issuer”, that enables

the citizen to be authenticated and is generated by the IssueCred algorithm described in the
“Coconut” paper. In the credential both the public ECDH keys of the credential issuer and the
citizen are readable.
27 “Zencode Coconut” in the Zenroom repository on github:

https://github.com/DECODEproject/Zenroom/tree/master/test/zencode_coconut
28 The smart contract in the Zenroom repository on github:

https://github.com/DECODEproject/Zenroom/blob/master/test/zencode_coconut/credential_keyg
en.zen

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e1489-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e1489-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e1489-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e1489-1-1
https://github.com/DECODEproject/Zenroom/tree/master/test/zencode_coconut
https://github.com/DECODEproject/Zenroom/blob/master/test/zencode_coconut/credential_keygen.zen
https://github.com/DECODEproject/Zenroom/blob/master/test/zencode_coconut/credential_keygen.zen

H2020–ICT-2016-1 DECODE D.4.12 Smart Contracts for Data

 Commons integrated with GDPR compliance

 14 legal rules and tested in pilots

Scenario coconut: verify proof

Given that I have a valid 'verifier' from 'Issuer'

and I have a valid 'credential proof'

When I aggregate the verifiers

and I verify the credential proof

Then print 'Success' 'OK' as 'string'

3) Digital signature of the petition30:

Scenario coconut: sign petition

Given I am 'Participant'

and I have my valid 'credential keypair'

and I have a valid 'credentials'

and I have a valid 'verifier' from 'Issuer'

When I aggregate the verifiers

and I create the petition signature 'poll'

Then print the 'petition signature'

29 The smart contract in the Zenroom repository on github:

https://github.com/DECODEproject/Zenroom/blob/master/test/zencode_coconut/verify_proof.ze
n
30 The smart contract in the Zenroom repository on github:

https://github.com/DECODEproject/Zenroom/blob/master/test/zencode_coconut/sign_petition.ze
n

https://github.com/DECODEproject/Zenroom/blob/master/test/zencode_coconut/verify_proof.zen
https://github.com/DECODEproject/Zenroom/blob/master/test/zencode_coconut/verify_proof.zen
https://github.com/DECODEproject/Zenroom/blob/master/test/zencode_coconut/sign_petition.zen
https://github.com/DECODEproject/Zenroom/blob/master/test/zencode_coconut/sign_petition.zen

H2020–ICT-2016-1 DECODE D.4.12 Smart Contracts for Data

 Commons integrated with GDPR compliance

 15 legal rules and tested in pilots

IoT/BCNNow Pilot

In the IoT pilot, multifunctional IoT sensors have been distributed to

citizens in Barcelona. Zenroom’s smart contracts are used here to

encrypt the data, which is later anonymized, implementing “privacy by

design” and “privacy by default” principles in line with article 25 of

GDPR, making it GDPR compliant.

Zenroom’s smart contracts used in the IoT pilot
31
 provide:

- Generation of keypair for every IoT pilot participant and Point-

to-point encryption of the data using the BCNNow public key using

Zenroom’s go bindings
32
 on a web service

33
 written in go.

- Managing the “participant” side of the Coconut zero-knowledge

proof flow, in order to allow the IoT participant to anonymously

get authenticated on the BCNNow website, using Zenroom’s

Webassembly port
34
. The same code is used in the DDDC pilot as

well.

- Generation of keypair as well as for the BCNNow server
35
 and

decryption of the IoT data, using Zenroom’s python
36
 bindings.

- Managing the “credential issuer” side of Coconut zero-knowledge

proof flow, in order to allow the IoT participant to anonymously

get authenticated on the BCNNow website
37
, using Zenroom’s python

bindings.

31 Privacy in the IoT Pilot (contained in “IoT privacy enhancing data sharing:
integration with Pilot Infrastructures”, pag.7) https://decodeproject.eu/publications/iot-
privacy-enhancing-data-sharing-integration-pilot-infrastructures

32 Zenroom go bindings: https://github.com/DECODEproject/zenroom-go

33 IoT encoder source code:
https://github.com/DECODEproject/iotencoder/blob/master/pkg/lua/scripts/encrypt.lua

34 IoT pilot authentication to BCNNow:
https://github.com/thingful/decodeweb/blob/master/app/assets/js/zenroom/index.js

35 BCNNow IoT collector:

https://github.com/DECODEproject/bcnnow/blob/master/apps/backend/data/collectors/p
ull/IoTCollector/IoTCollector.py

36 Zenroom’s Python bindings: https://github.com/DECODEproject/zenroom-py

37 BCNNow Coconut flow:

https://github.com/DECODEproject/bcnnow/blob/master/apps/backend/data/collectors/p
ull/DecidimCollector/DecidimPetitionCollector.py

https://decodeproject.eu/publications/iot-privacy-enhancing-data-sharing-integration-pilot-infrastructures
https://decodeproject.eu/publications/iot-privacy-enhancing-data-sharing-integration-pilot-infrastructures
https://github.com/DECODEproject/zenroom-go
https://github.com/DECODEproject/iotencoder/blob/master/pkg/lua/scripts/encrypt.lua
https://github.com/thingful/decodeweb/blob/master/app/assets/js/zenroom/index.js
https://github.com/DECODEproject/bcnnow/blob/master/apps/backend/data/collectors/pull/IoTCollector/IoTCollector.py
https://github.com/DECODEproject/bcnnow/blob/master/apps/backend/data/collectors/pull/IoTCollector/IoTCollector.py
https://github.com/DECODEproject/zenroom-py
https://github.com/DECODEproject/bcnnow/blob/master/apps/backend/data/collectors/pull/DecidimCollector/DecidimPetitionCollector.py
https://github.com/DECODEproject/bcnnow/blob/master/apps/backend/data/collectors/pull/DecidimCollector/DecidimPetitionCollector.py

H2020–ICT-2016-1 DECODE D.4.12 Smart Contracts for Data

 Commons integrated with GDPR compliance

 16 legal rules and tested in pilots

Figure 4: the DECODE IoT Pilot Architecture

In the IoT pilot, Zenroom smart-contracts are responsible for the

whole cryptographic flow and authentication, allowing a state-of-the

art level of security. In addition to GDPR compliance, the “The

Digital Data Commons Privacy pledge
38
” has been adopted and is shown

on the BCNNow website to the visitors of the website.

38 “Digital Data Commons Privacy Pledge” (contained in the ”Licensing of digital

commons including personal data – update”, pag. 60):
https://decodeproject.eu/publications/licensing-digital-commons-including-personal-
data-update

https://decodeproject.eu/publications/licensing-digital-commons-including-personal-data-update
https://decodeproject.eu/publications/licensing-digital-commons-including-personal-data-update

H2020–ICT-2016-1 DECODE D.4.12 Smart Contracts for Data

 Commons integrated with GDPR compliance

 17 legal rules and tested in pilots

18+ Pilot

In Amsterdam’s “18+ Pilot” a Zenroom powered passport scanner was

developed, to read the NFC chip contained in modern passports. The

hardware and software specs are available on the Amsterdam’s

municipality Github repository
39
. The scanner looks like:

Figure 5: 18+ scanner box

The scanner produces a QR code, with embedded a credential, that is a

JSON object containing:

- The date of birth of the user

- The picture of the user, contained in the passport’s rfid chip

- An ECDH signature of the object

The data flow of the 18+ pilot are described in Waag’s blog post

“Claim Verification 18+: Summary of a DECODE pilot in Amsterdam”
40
 and

39 City of Amsterdam’s github repo:
https://github.com/Amsterdam/decode_passport_scanner

40 “Claim Verification 18+: Summary of a DECODE pilot in Amsterdam”

https://decodeproject.eu/blog/claim-verification-18-summary-decode-pilot-amsterdam

https://github.com/Amsterdam/decode_passport_scanner
https://decodeproject.eu/blog/claim-verification-18-summary-decode-pilot-amsterdam

H2020–ICT-2016-1 DECODE D.4.12 Smart Contracts for Data

 Commons integrated with GDPR compliance

 18 legal rules and tested in pilots

in the deliverable “Deployment of pilots in Amsterdam” (D5.5)
41
. To

summarize:

- The QR code is first produced by the screen of the passport

scanner

- The QR code is then scanned user’s smartphone, using the web app

https://decode.amsterdam

- The web app stores the QR in the smartphone’s storage

 Since the QR is not processed or stored by any web service, but the

processing occurs entirely in the smartphone, the service is fully

GDPR compliant.

Gebiedonline Pilot

The Gebiedonline pilot was developed without using Zenroom but using

Dutch developed IRMA authentication technology. IRMA offers online,

centralized attribute based credential authentication, whose privacy

has been audited by an external service provider and is declared on

the page https://wijzijnnieuwland.nl/privacy-local

41 “Deployment of pilots in Amsterdam” D5.5:

https://www.decodeproject.eu/publications/deployment-pilots-amsterdam

https://decode.amsterdam/
https://wijzijnnieuwland.nl/privacy-local
https://www.decodeproject.eu/publications/deployment-pilots-amsterdam

H2020–ICT-2016-1 DECODE D.4.12 Smart Contracts for Data

 Commons integrated with GDPR compliance

 19 legal rules and tested in pilots

Conclusions

In three of the four pilots of the project, smart contracts (mostly

written in Zencode, some written in Lua) have been extensively used

for:

- Implementing an anonymous authentication flow, in line with GDPR

“privacy by default” concept (DDDC, IoT/BCNNow, 18+)

- Performing cryptography on data of different nature. (IoT/BCNNow,

DDDC)

- Performing the cryptography needed to manage the whole petition

flow (creation, signature, tally and count), where each voter’s

signature is stored on a blockchain and identified by a randomly

generated number, reaching once again GDPR’s “privacy by

default”. (DDDC)

The work on licensing for data commons has been included in the BCNNow

landing page, that the users access to see how their data is being

managed.

