
D1.5
Intermediate Version of
DECODE Architecture

�

  

Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D1.5] [“Intermediate Version of DECODE Architecture"]

Version Number: [V1.0]

Lead beneficiary: [UCL]

Due Date: [Jan 2019]

Author(s): Alberto Sonnino (UCL), Shehar Bano (UCL), George Danezis (UCL), Jim Barritt (TW)

Editors and reviewers: Jim Barritt (TW), Denis Jaromil Roio (DYNE)

�

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

To be approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City
Hall)

Date: [31/01/2019]

H2020–ICT-2016-1 DECODE

This report is currently awaiting approval from the EC and cannot be not considered to be a final

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

Contents

1 Introduction 2

2 Backgrounds 3
2.1 Cross-Shard Atomic Commit Protocols . 3
2.2 Coconut: Threshold Issuance Selective Disclosure Credentials 4

3 System Overview 5
3.1 High Level Architecture . 5
3.2 Production Readiness . 7
3.3 Threat Modelling . 9

4 Distributed Ledger 10
4.1 Data Model: Objects, Contracts, Transactions. 10
4.2 Application Interface . 11
4.3 High-Integrity Data Structures . 14
4.4 Distributed Architecture & Consensus . 16
4.5 Leaderful Sharded Byzantine Atomic Commit 17
4.6 System Contracts . 19

5 Smart Contract Applications 21
5.1 Privacy-preserving petition . 21
5.2 Demographic decision-making smart contract 22

6 Conclusion 23

H2020-ICT-2016-1 1 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

1 Introduction

DECODE is an evolution of the concept of decentralised systems which leverages state
of the art cryptographic techniques such as Distributed Ledgers and Attribute Based
Credentials to build a system that provides its Participants the capability to store data
securely, give control and transparency over with whom and for what purpose data is
shared and transact with other participants or organisations. At a high level we can de-
scribe DECODE as providing the following:

• A set of specifications for distributed ledgers to support decode

• A free and open source reference implementation of a distributed ledger

• A smart rule language that can be translated and graphically represented

• A GNU/Linux based operating system that can execute signed smart rule applica-
tions

• The documentation needed for operators to write and deploy smart rules that re-
quest access to private data

• An intuitive graphical interface for participants to allow smart rules to access their
private data

• An ontology of attributes for private data that is aggregated by operators

• An attribute based cryptographic implementation that can grant access to data

The core technical components in the architecture that provide these features are the
following:

• Decode OS - A linux distribution derived from and packaged to contain by default
all necessary decode components[2]

• TorDam - A p2p discovery and networking component built on a private subnet over
network and including a means for identifying and verifying peer nodes[3]

• Chainspace - A distributed ledger implementation[1]

• Zenroom - A restricted execution environment which is very lightweight and portable
and can be run either on server or restricted compute devices (e.g. smartphones)[5]

• DECODE Wallet - A smartphone (Android and IOS) mobile application that al-
lows particpants in the decode ecosystem to interact with decode applications (e.g.
record their entry for a secure petition)[4]

Please refer to Section 3.1 “High Level Architecture” for a description of how these
components interact, using an example of building a secure, verifiable but privacy pre-
serving petition application.

As can be seen, DECODE is not a single application, rather a set of components that
can be used together to build applications. The DECODE project has built the compo-
nents and demonstrated for particular use cases how they might be used in combination.
A core architectural philosophy has been to follow the linux approach of modularisation
and combination of components. Therefore each of the components, excepting the wallet
can be used independently and represent significant open source contributions in their

H2020-ICT-2016-1 2 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

own right. The wallet is somewhat more specific to the use cases which are demonstrated
but provides a template for subsequent implementors to build further systems.

From a technology perspective, a key goal of DECODE is to bring sophisticated cryp-
tographic and opensource technology to a wider audience of developers, enabling future
projects who are concerned with privacy and control of data to have access to these ex-
citing and valuable technologies. The DECODE project, by creating these components
and making them open source has already contributed significantly to the open source
community in terms of working and reusable code. In the next stages it will bring these
components into a field testing phase with the pilots.

Each of these components is described in detail in the various github repositories
contained in the references. This paper focuses on the core component of the distributed
ledger, called Chainspace. Chainspace is a distributed ledger platform for high-integrity
and transparent processing of transactions within a decentralized system. Unlike ap-
plication specific distributed ledgers, such as Bitcoin [24] for a currency, or certificate
transparency [19] for certificate verification, Chainspace offers extensibility though smart
contracts, like Ethereum [32]. However, users expose to Chainspace enough information
about contracts and transaction semantics, to provide higher scalability through sharding
across infrastructure nodes. Ethereum currently processes 4 transactions per second,
out of theoretical maximum of 25. Furthermore, our platform is agnostic as to the smart
contract language, or identity infrastructure, and supports privacy features through mod-
ern zero-knowledge techniques [8, 12].

Unlike other scalable but ‘permissioned’ smart contract platforms, such as Hyper-
ledger Fabric [9] or BigchainDB [21], Chainspace aims to be an ‘open’ system: it allows
anyone to author a smart contract, anyone to provide infrastructure on which smart con-
tract code and state runs, and any user to access calls to smart contracts. Further, it
provides ecosystem features, by allowing composition of smart contracts from different
authors. We integrate a value system, named CSCoin, as a system smart contract to
allow for accounting between those parties. However, the security model of Chainspace,
is different from traditional unpermissioned blockchains, that rely on proof-of-work and
global replication of state, such as Ethereum. In Chainspace smart contract authors
designate the parts of the infrastructure that are trusted to maintain the integrity of their
contract—and only depend on their correctness, as well as the correctness of contract
sub-calls. This provides fine grained control of which part of the infrastructure need to be
trusted on a per-contract basis, and also allows for horizontal scalability.

2 Backgrounds

We present backgrounds on cross-shard atomic commit protocols and coconut [30].

2.1 Cross-Shard Atomic Commit Protocols

The blockchain is maintained by computers (called nodes) that form a distributed network.
Data on the blockchain cannot be deleted. Anyone can read data from the blockchain and
verify its correctness. Only special node(s) can write to the blockchain by means of a con-
sensus protocol, to ensure that the entire network agrees on new state of the blockchain
as a result of the write operation. Earlier systems like Bitcoin [25] allowed a single node to
be probabilistically elected and extend the blockchain. However, such systems have low
consistency (forks can be created) and low performance (high latency and low through-
put). Consequently, there has been a shift to committee-based designs [7] where a group
of nodes collectively extends the blockchain typically via classical consensus protocols

H2020-ICT-2016-1 3 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

such as BFT [10]. While these systems offer better performance, single-committee con-
sensus is not scalable—as every nodes handles every transaction, adding more nodes
to the committee decreases throughput.

This motivated the design of sharded systems, where multiple committees handle a
subset of all the transactions allowing parallel execution of transactions. Every commit-
tee has its own blockchain and set of objects (or unspent transaction outputs, UTXO) that
they manage—committees run an ‘intra-shard’ consensus protocol e.g., BFT within them-
selves and extend their blockchains in parallel. Some transactions may operate on ob-
jects handled by different shards, effectively requiring the relevant shards to run another
consensus protocol—cross-shard protocol—to enable agreement across the shards. If
any shard rejects the transaction, all relevant shards should likewise reject the transac-
tion.

These properties are achieved by running a cross-shard consensus protocol across
the relevant shards such as the two-phase atomic commit protocol. This protocol has two
phases which are run by a coordinator. In the first voting phase, the nodes tentatively
write changes locally and report their status to the coordinator. If the coordinator does
not receive status message from a node (e.g., because the node crashed or the status
message was lost), it assumes that the node’s local write failed and sends a rollback
message to all the nodes to ensure any local changes are reversed. If the coordinator
receives status messages from all the nodes, it initiates the second commit phase and
sends a commit message to all the nodes so they can permanently write the changes.
In the context of sharded blockchains, the atomic commit protocol operates on shards
(which make the local changes associated with the voting phase via an intra-shard con-
sensus protocol like BFT), rather than nodes. Another important consideration in the
context of sharded blockchains is who will assume the role of the coordinator. There
currently exist two key approaches [7]; either (i) the client act as coordinator, or (ii) the
shards collectively act as coordinator.

2.2 Coconut: Threshold Issuance Selective Disclosure Credentials

Selective disclosure credentials allow the issuance of a credential to a user, and the
subsequent unlinkable revelation (or ‘showing’) of some of the attributes it encodes to a
verifier for the purposes of authentication, authorisation or to implement electronic cash.
While a number of schemes have been proposed, these have limitations, particularly
when it comes to issuing fully functional selective disclosure credentials without sacrific-
ing desirable distributed trust assumptions. Some entrust a single issuer with the creden-
tial signature key, allowing a malicious issuer to forge any credential or electronic coin.
Other schemes do not provide the necessary re-randomisation or blind issuing properties
necessary to implement modern selective disclosure credentials. No existing scheme
provides all of threshold distributed issuance, private attributes, re-randomisation, and
unlinkable multi-show selective disclosure.

Coconut a novel scheme that supports distributed threshold issuance, public and pri-
vate attributes, re-randomization, and multiple unlinkable selective attribute revelations.
Coconut allows a subset of decentralised mutually distrustful authorities to jointly issue
credentials, on public or private attributes. These credentials cannot be forged by users,
or any small subset of potentially corrupt authorities. Credentials can be re-randomised
before selected attributes being shown to a verifier, protecting privacy even in the case
all authorities and verifiers collude.

The lack of full-featured selective disclosure credentials impacts platforms that sup-
port ‘smart contracts’, such as Ethereum, Hyperledger and Chainspace. They all share
the limitation that verifiable smart contracts may only perform operations recorded on a

H2020-ICT-2016-1 4 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

Figure 1: A high-level overview of Coconut architecture.

public blockchain. Moreover, the security models of these systems generally assume that
integrity should hold in the presence of a threshold number of dishonest or faulty nodes
(Byzantine fault tolerance). It is desirable for similar assumptions to hold for multiple
credential issuers (threshold aggregability). Issuing credentials through smart contracts
would be very useful. A smart contract could conditionally issue user credentials depend-
ing on the state of the blockchain, or attest some claim about a user operating through
the contract—such as their identity, attributes, or even the balance of their wallet. As Co-
conut is based on a threshold issuance signature scheme, that allows partial claims to be
aggregated into a single credential, it allows collections of authorities in charge of main-
taining a blockchain, or a side chain based on a federated peg, to jointly issue selective
disclosure credentials.

Coconut is a fully featured selective disclosure credential system, supporting thresh-
old credential issuance of public and private attributes, re-randomisation of credentials
to support multiple unlikable revelations, and the ability to selectively disclose a subset
of attributes. It is embedded into a smart contract library, that can be called from other
contracts to issue credentials. The Coconut architecture is illustrated in Figure 1. Any
Coconut user may send a Coconut request command to a set of Coconut signing author-
ities; this command specifies a set of public or encrypted private attributes to be certified
into the credential (Ê). Then, each authority answers with an issue command delivering
a partial credentials (Ë). Any user can collect a threshold number of shares, aggregate
them to form a consolidated credential, and re-randomize it (Ì). The use of the credential
for authentication is however restricted to a user who knows the private attributes embed-
ded in the credential—such as a private key. The user who owns the credentials can then
execute the show protocol to selectively disclose attributes or statements about them (Í).
The showing protocol is publicly verifiable, and may be publicly recorded.

3 System Overview

3.1 High Level Architecture

Figure 2 shows a high level view of how the DECODE components work together to cre-
ate a network of validating nodes to which transactions can be submitted to chainspace.
The DECODE P2P Network is formed by the Tor Dam nodes [3] communicating with each
other. These run on DECODE OS which can be run on hardware “hubs” as explored in
deliverable X. This forms the foundation of the network between DECODE validating
nodes. We call these validating nodes because they are running Chainspace nodes and
therefore constitue the distributed ledger described within this document.

H2020-ICT-2016-1 5 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

Figure 2: A high-level overview of DECODE architecture.

As describe in Section 4, Chainspace provides an extremely flexible model for creat-
ing smart contracts. This has allowed us to create an implementation of a chainspace
checker that executes Zenroom scripts. This allows us to write cryptographically ad-
vanced contracts in zenroom and execute them on the chainspace network. One such
contract is based on the coconut protocol and allows us to implement a privacy preserving
petition, as described in Section 5.1. We can see in the figure that the DECODE Wallet
also executes Zenroom. The wallet is a react-native mobile application which integrates
directly with zenroom on the mobile device and thus allows the participant to maintain
complete control of their cryptographic key materials on their device.

Being able to submit and verify transactions is only part of the application ecosystem.
In order for the information to be interesting and accessible we will require some entry
point. We call this the “Decode Application” and will usually be a website which provides
a user experience for the particular application. In the example of a privacy preserving
petition, this would be the website that hosts the petitions and publicises them and also
eventually displays the results. The participant will visit the website and be provided a link
(either directly if browsing from their mobile device or via a QR code if not) which opens
in the wallet and passes key information about the petition which allows them to sign
it. Note that the application itself never has access to any private material of the wallet,
and no such information is shared directly to the application, only via the ledger. Finally
in the case of the petition example, we require a system to allow the user to generate
a credential (perhaps providing evidence of their residency in a particular city). This
component is known as the “Credential Issuer”. The credential issuer will implement the
issuing part of the coconut protocol, also utlising Zenroom to execute the cryptographic
functions.

H2020-ICT-2016-1 6 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

3.2 Production Readiness

The delivery goal of DECODE is to develop technology components and field test them in
real world scenarios, working with community organisations to test the technology. These
are called the "Pilots".

It is expected that different components will reach different levels of maturity during
the project. The deliverable D4.16 DECODE architecture stability usability due at the
end of the project will use this model as the basis to report to what level it has been
possible to develop the technology, what limitations it has (the operating envelope and
what future work could be done to mitigate the limitations. We define three phases of
delivery evolution for the technology over the course of the project which are summarised
in Table 1.

Phase Description

PHASE-0 Pilot ’alpha’ (initial, controlled early testing phase
PHASE-1 Pilot ’beta’ (expected full scale of pilots during the time of the

DECODE project funding
PHASE-2 Wider community adoption (post DECODE project funding

Table 1: Phases for considering production readiness

At each phase, we consider what is required of the technology and assess the com-
ponents against these. This results in a definition of the “operating envelope” of the
technology so that it can be seen what the limitations of each component are and what
would be required to meet the next level. For each pilot we will define a set of key metrics
which can then be compared to the operating envelope of the components in order to
make an assessment of their suitability. At each phase we consider the following dimen-
sions, which are essentially the “Non functional Requirement” (NFR) categories of the
systems (sumarised in Table ??).

NFR Category Description

Scalability Ability of the system to meet the end-user availability and per-
ceived latency expectations for a given number of users of the
system

Integrity Ability of the system to preserve and evidence (audit) the in-
tegrity of data stored within it mapped against a defined failure
model

Confidentiality Ability of the system to preserve the confidentiality (privacy)
of the data stored within it mapped against a defined threat
model

Usability Ability of the system to enable end-users to achieve their user
goals whilst meeting their expectations around ease of use
and time taken to reach a goal

Operability Ability of the system to enable operators to perform adminis-
trative functions and provide diagnostic metrics to operators to
aid touble-shooting and maintain the expected quality of ser-
vice as defined by the NFR metrics

Evolvability Ability of the system to be evolved through making software
changes meeting the expectations of delivery teams an devel-
opers in terms of developer experience

Table 2: Phases for assessing production readiness

H2020-ICT-2016-1 7 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

For each category we define specific metrics which can be measured and assessed
against the expected conditions at each phase of delivery.

Scalability

The system should support a defined set of criteria for scalability. It is important to note
that setting the constraints for these parameters can significantly alter the cost of an
implementation. We do not need to achieve infinite scalability, it is more important to
understand the limits of the systems we are building (operating envelope) and understand
if that is appropriate for the context in which they operate. Key metrics we can use to
define this envelope are:

• Client-side latency (i.e. how long does a tx take end to end on the client device, say
the wallet)

• Latency of all network calls in the system (e.g. between nodes or to a database,
the checker)

• Number of transactions per second (as measured on the endpoints of each network
service)

• Memory consumption

• Storage consumption

• Cpu utilisation

• Time to recover from a fault

Integrity

The design of the system should define what happens in these case and how to recover.
When considering integrity, we should also consider how one can verify or demonstrate
the integrity of the data to an entity outside the system (e.g. via digital signatures, hash
chains of proof). Integrity in terms of resilience should consider two fault types:

• Crash faults

• Byzantine faults

Confidentiality

• What data is stored where

• Encrpytion mechanisms

• Threat model - what threats are mitigated, what are the limitations?

• Trust model (limitations on rquiring trusted partners)

• Practices around data management

• Penetration testing

• Secure coding practices (owasp to 10, validation of vulnerabilities against CVE
database of libraries)

H2020-ICT-2016-1 8 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

Usability

• Measure time taken to complete a task (e.g. from signing in to signing a petitoin

• User feedback forms (ratings / feedback etc)

• User testing and observation

• Internationalisation

• Operations staff and developers are also users of the system!

Operability

• Provide visibility of NFR metrics via a User Experience

• Installation documentation and tools

• Packaging of software for installation

• Compatibility with target operating systems and libraries

Evolvability

• Developer documentation

• Modularisation

• Test coverage

• Infrastructure as code [23]

• Continuous Delivery practices[15]

3.3 Threat Modelling

Threat Modelling is an integral part of application planning and review. For this project,
we have followed the best practices recommended by OWASP [27]. It is not possible to
conduct a threat modelling excercise in the abstract, and therefore for each of the pilot
use cases, we conducted a separate threat modelling excercise. The detailed results of
these are available separately from this document, included with documentation of the
particular pilots. The exercise consists of analysing attack vectors and their motivations
by any possible actors at any point in the architecture or user flow. The exercise con-
cludes with recommended mitigations and raising of risks to accompany development
and deployment decisions. The process of Threat Modelling consists of the following
steps.

• Review application architecture

• Document attackers, motivations, and attack scenarios, using STRIDE [26]

• Organise vectors into attack trees and prioritise

• Decide on mitigation strategy for identified threats

H2020-ICT-2016-1 9 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

4 Distributed Ledger

Chainspace allows applications developers to implement distributed ledger applications
by defining and calling procedures of smart contracts operating on controlled objects, and
abstracts the details of how the ledger works and scales.

4.1 Data Model: Objects, Contracts, Transactions.

Chainspace applies aggressively the end-to-end principle [29] in relying on untrusted
end-user applications to build transactions to be checked and executed. We describe
below key concepts within the Chainspace data model, that developers need to grasp to
use the system.

Objects are atoms that hold state in the Chainspace system. We usually refer to an
object through the letter o, and a set of objects as o ∈ O. All objects have a cryptograph-
ically derived unique identifier used to unambiguously refer to the object, that we denote
id(o). Objects also have a type, denoted as type(o), that determines the unique identifier
of the smart contract that defines them, and a type name. In Chainspace object state is
immutable. Objects may be in two meta-states, either active or inactive. Active objects
are available to be operated on through smart contract procedures, while inactive ones
are retained for the purposes of audit only.

Contracts are special types of objects, that contain executable information on how
other objects of types defined by the contract may be manipulated. They define a set
of initial objects that are created when the contract is first created within Chainspace. A
contract c defines a namespace within which types (denoted as types(c)) and a checker
v for procedures (denoted as proc(c)) are defined.

A procedure, p, defines the logic by which a number of objects, that may be inputs
or references, are processed by some logic and local parameters and local return val-
ues (denoted as lpar and lret), to generate a number of object outputs. Notionally, input
objects, denoted as a vector ~w, represent state that is invalidated by the procedure; ref-
erences, denoted as ~r represent state that is only read; and outputs are objects, or ~x are
created by the procedure. Some of the local parameters or local returns may be secrets,
and require confidentiality. We denote those as spar and sret respectively.

We denote the execution of such a procedure as:

c.p(~w,~r, lpar, spar)→ ~x, lret, sret (1)

for ~w,~r, ~x ∈ O and p ∈ proc(c). We restrict the type of all objects (inputs ~w, outputs ~x and
references ~r) to have types defined by the same contract c as the procedure p (formally:
∀o ∈ ~w ∪ ~x ∪ ~r.type(o) ∈ types(c)). However, public locals (both lpar and lret) may refer
to objects that are from different contracts through their identifiers. We further require
a procedure that outputs an non empty set of objects ~x, to also take as parameters a
non-empty set of input objects ~w. Transactions that create no outputs are allowed to just
take locals and references ~r.

Associated with each smart contract c, we define a checker denoted as v. Those
checkers are pure functions (ie. deterministic, and have no side-effects), and return a
Boolean value. A checker v is defined by a contract, and takes as parameters a procedure
p, as well as inputs, outputs, references and locals.

c.v(p, ~w,~r, lpar, ~x, lret, dep)→ {true, false} (2)

Note that checkers do not take any secret local parameters (spar or sret). A checker for
a smart contract returns true only if there exist some secret parameters spar or sret, such
that an execution of the contract procedure p, with the parameters passed to the checker

H2020-ICT-2016-1 10 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

user

Transaction
p:
w:
r:
lpar:
x:
lret:
dep:

procedure
inputs
references
local parameters
outputs
local returns
dependencies

Shard

node node node

node node …

objects status
o1

o2

…

active

…

Shard

node node node

node node …

objects status
o1

o2

…

active

…

Figure 3: Design overview of Chainspace system, showing the interaction between users,
transactions, objects and nodes in shards.

alongside spar or sret, is possible as defined in Equation (1). The variable dep represent
the context in which the procedure is called: namely information about other procedure
executions. This supports composition, as we discuss in detail in the next section.

We note that procedures, unlike checkers, do not have to be pure functions, and
may be randomized, keep state or have side effects. A smart contract defines explic-
itly the checker c.v, but does not have to define procedures per se. The Chainspace
system is oblivious to procedures, and relies merely on checkers. Yet, applications may
use procedures to create valid transactions. The distinction between procedures and
checkers—that do not take secrets—is key to implementing privacy-friendly contracts.

Transactions represent the atomic application of one or more valid procedures to ac-
tive input objects, and possibly some referenced objects, to create a number of new active
output objects. The design of Chainspace is user-centric, in that a user client executes all
the computations necessary to determine the outputs of one or more procedures forming
a transaction, and provides enough evidence to the system to check the validity of the
execution and the new objects.

Once a transaction is accepted in the system it ‘consumes’ the input objects, that be-
come inactive, and brings to life all new output objects that start their life by being active.
References on the other hand must be active for the transaction to succeed, and remain
active once a transaction has been successfully committed. A client packages enough
information about the execution of those procedures to allow Chainspace to safely seri-
alize its execution, and atomically commit it only if all transactions are valid according to
relevant smart contract checkers.

4.2 Application Interface

Smart Contract developers in Chainspace register a smart contract c into the distributed
system managing Chainspace, by defining a checker for the contract and some initial
objects. Users may then submit transactions to operate on those objects in ways allowed
by the checkers. Transactions represent the execution of one or more procedures from
one or more smart contracts. It is necessary for all inputs to all procedures within the
transaction to be active for a transaction to be executed and produce any output objects.

Transactions are atomic: either all their procedures run, and produce outputs, or none
of them do. Transactions are also consistent : in case two transactions are submitted to

H2020-ICT-2016-1 11 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

the system using the same active object inputs, at most one of them will eventually be
executed to produce outputs. Other transactions, called conflicting, will be aborted.

Representation of Transactions. A transaction within Chainspace is represented by
sequence of traces of the executions of the procedures that compose it, and their interde-
pendencies. These are computed and packaged by end-user clients, and contain all the
information a checker needs to establish its correctness. A Transaction is a data structure
such that:

type Transaction : Trace list
type Trace : Record {

c : id(o), p : string,
~w,~r, ~x : id(o) list,
lpar, lret : arbitrary data,
dep : Trace list}

To generate a set of traces composing the transaction, a user executes on the client
side all the smart contract procedures required on the input objects, references and local
parameters, and generates the output objects and local returns for every procedure—
potentially also using secret parameters and returns. Thus the actual computation behind
the transactions is performed by the user, and the traces forming the transaction already
contain the output objects and return parameters, and sufficient information to check
their validity through smart contract checkers. This design pattern is related to traditional
optimistic concurrency control.

Only valid transactions are eventually committed into the Chainspace system, as
specified by two validity rules sequencing and checking presented in Figure 4. Trans-
actions are considered valid within a context of a set of active objects maintained by
Chainspace, denoted with α. Valid transactions lead to a new context of active objects
(eg. α′). We denote this through the triplet (α,Valid(T), α′), which is true if the execution
of transaction T is valid within the context of active objects α and generates a new context
of active objects α′. The two rules are as follows:

• (Sequence rule). A ‘Trace list’ (within a ‘Transaction’ or list of dependencies) is
valid if each of the traces are valid in sequence (see Figure 4 rule for sequencing).
Further, the active objects set is updated in sequence before considering the validity
of each trace.

• (Check rule). A particular ‘Trace’ is valid, if the sequence of its dependencies are
valid, and then in the resulting active object context, the checker for it returns true.
A further three side conditions must hold: (1) inputs and references must be active;
(2) if the trace produces any output objects it must also contain some input objects;
and (3) all objects passed to the checker must be of types defined by the smart
contract of this checker (see Figure 4 rule for checking).

The ordering of active object sets in the validation rules result in a depth-first validation
of all traces, which represents a depth-first execution and data flow dependency between
them. It is also noteworthy that only the active set of objects needs to be tracked to
determine the validity of new transactions, which is in the order of magnitude of active
objects in the system. The much longer list of inactive objects, which grows to encompass
the full history of every object in the system is not needed—which we leverage to enable
better when validating transactions. It also results in a smaller amount of working memory
to perform incremental audits.

H2020-ICT-2016-1 12 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

A valid transaction is executed in a serialized manner, and committed or aborted
atomically. If it is committed, the new set of active objects replaces the previous set; if
not the set of active objects does not change. Determining whether a transaction may
commit involves ensuring all the input objects are active, and all are consumed as a result
of the transaction executing, as well as all new objects becoming available for processing
(references however remain active).

Smart contract composition. A contract procedure may call a transaction of another
smart contract, with specific parameters and rely upon returned values. This is achieved
through passing the dep variable to a smart contract checker, a validated list of traces
of all the sub-calls performed. The checker can ensure that the parameters and return
values are as expected, and those dependencies are checked for validity by Chainspace.

Composition of smart contracts is a key feature of a transparent and auditable com-
putation platform. It allows the creation of a library of smart contracts that act as utilities
for other higher-level contracts: for example, a simple contract can implement a crypto-
graphic currency, and other contracts—for e-commerce for example—can use this cur-
rency as part of their logic. Furthermore, we compose smart contracts, in order to build
some of the functionality of Chainspace itself as a set of ‘system’ smart contracts, in-
cluding management of shards mapping to nodes, key management of shard nodes, and
governance.

Chainspace also supports the atomic batch execution of multiple procedures for effi-
ciency, that are not dependent on each other.

Reads. Besides executing transactions, Chainspace clients, need to read the state of
objects, if anything, to correctly form transactions. Reads, by themselves, cannot lead
to inconsistent state being accepted into the system, even if they are used as inputs or
references to transactions. This is a result of the system checking the validity rules before
accepting a transaction, which will reject any stale state.

Thus, any mechanism may be used to expose the state of objects to clients, including
traditional relational databases, or ‘no-SQL’ alternatives. Additionally, any indexing mech-
anism may be used to allow clients to retrieve objects with specific characteristics faster.
Decentralized, read-only stores have been extensively studied, so we do not address the
question of reads further in this work.

Privacy by design. Defining smart contract logic as checkers allows Chainspace to
support privacy friendly-contracts by design. In such contracts some information in ob-
jects is not in the clear, but instead either encrypted using a public key, or committed
using a secure commitment scheme as [28]. The transaction only contains a valid proof
that the logic or invariants of the smart contract procedure were applied correctly or hold
respectively, and can take the form of a zero-knowledge proof, or a Succinct Argument of
Knowledge (SNARK). Then, generalizing the approach of [22], the checker runs the ver-
ifier part of the proof or SNARK that validates the invariants of the transactions, without
revealing the secrets within the objects to the verifiers.

In Chainspace a network of infrastructure nodes manages valid objects, and ensure
key invariants: namely that only valid transactions are committed. We discuss the data
structures nodes use collectively and locally to ensure high integrity; and the distributed
protocols they employ to reach consensus on the accepted transactions.

H2020-ICT-2016-1 13 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

↵0,Valid(t),↵0 ↵0,Valid(T 0),↵1 (Sequence)
↵0,Valid(T = t :: T 0),↵1

↵0,Valid(dep),↵0 ↵0, c.v(p, ~w,~r, lpar, ~x, lret, dep), (↵0 \ ~w) [~x

~w,~r 2 ↵0^
(~x 6= ;) ! (~w 6= ;)^

8o 2 ~w [~x [~r.type(o) 2 types(c)
(Check)

↵0,Valid(t = [c, p, ~w,~r, ~x, lpar, lret, dep]), (↵0 \ ~w) [~x

Fig. 2. The sequencing and checking validity rules for transactions.

To generate a set of traces composing the transaction, a user
executes on the client side all the smart contract procedures
required on the input objects, references and local parameters,
and generates the output objects and local returns for every
procedure—potentially also using secret parameters and re-
turns. Thus the actual computation behind the transactions is
performed by the user, and the traces forming the transaction
already contain the output objects and return parameters, and
sufficient information to check their validity through smart
contract checkers. This design pattern is related to traditional
optimistic concurrency control.

Only valid transactions are eventually committed into
the Chainspace system, as specified by two validity rules
sequencing and checking presented in Figure 2. Transactions
are considered valid within a context of a set of active objects
maintained by Chainspace, denoted with ↵. Valid transactions
lead to a new context of active objects (eg. ↵0). We denote
this through the triplet (↵, Valid(T),↵0), which is true if the
execution of transaction T is valid within the context of active
objects ↵ and generates a new context of active objects ↵0. The
two rules are as follows:

• (Sequence rule). A ‘Trace list’ (within a ‘Transaction’
or list of dependencies) is valid if each of the traces are
valid in sequence (see Figure 2 rule for sequencing).
Further, the active objects set is updated in sequence
before considering the validity of each trace.

• (Check rule). A particular ‘Trace’ is valid, if the
sequence of its dependencies are valid, and then in
the resulting active object context, the checker for it
returns true. A further three side conditions must hold:
(1) inputs and references must be active; (2) if the
trace produces any output objects it must also contain
some input objects; and (3) all objects passed to the
checker must be of types defined by the smart contract
of this checker (see Figure 2 rule for checking).

The ordering of active object sets in the validation rules
result in a depth-first validation of all traces, which represents
a depth-first execution and data flow dependency between them.
It is also noteworthy that only the active set of objects needs
to be tracked to determine the validity of new transactions,
which is in the order of magnitude of active objects in the
system. The much longer list of inactive objects, which grows
to encompass the full history of every object in the system is not
needed—which we leverage to enable better when validating
transactions. It also results in a smaller amount of working
memory to perform incremental audits.

A valid transaction is executed in a serialized manner, and

committed or aborted atomically. If it is committed, the new set
of active objects replaces the previous set; if not the set of active
objects does not change. Determining whether a transaction
may commit involves ensuring all the input objects are active,
and all are consumed as a result of the transaction executing,
as well as all new objects becoming available for processing
(references however remain active). Chainspace ensures this
through the distributed atomic commit protocol, S-BAC.

Smart contract composition. A contract procedure may call a
transaction of another smart contract, with specific parameters
and rely upon returned values. This is achieved through passing
the dep variable to a smart contract checker, a validated list of
traces of all the sub-calls performed. The checker can ensure
that the parameters and return values are as expected, and those
dependencies are checked for validity by Chainspace.

Composition of smart contracts is a key feature of a
transparent and auditable computation platform. It allows the
creation of a library of smart contracts that act as utilities for
other higher-level contracts: for example, a simple contract
can implement a cryptographic currency, and other contracts—
for e-commerce for example—can use this currency as part
of their logic. Furthermore, we compose smart contracts, in
order to build some of the functionality of Chainspace itself
as a set of ‘system’ smart contracts, including management of
shards mapping to nodes, key management of shard nodes, and
governance.

Chainspace also supports the atomic batch execution of
multiple procedures for efficiency, that are not dependent on
each other.

Reads. Besides executing transactions, Chainspace clients, need
to read the state of objects, if anything, to correctly form
transactions. Reads, by themselves, cannot lead to inconsistent
state being accepted into the system, even if they are used as
inputs or references to transactions. This is a result of the system
checking the validity rules before accepting a transaction, which
will reject any stale state.

Thus, any mechanism may be used to expose the state of
objects to clients, including traditional relational databases, or
‘no-SQL’ alternatives. Additionally, any indexing mechanism
may be used to allow clients to retrieve objects with specific
characteristics faster. Decentralized, read-only stores have been
extensively studied, so we do not address the question of reads
further in this work.

Privacy by design. Defining smart contract logic as checkers
allows Chainspace to support privacy friendly-contracts by
design. In such contracts some information in objects is not
in the clear, but instead either encrypted using a public key,

4

Figure 4: The sequencing and checking validity rules for transactions.

4.3 High-Integrity Data Structures

Chainspace employs a number of high-integrity data structures. They enable those in
possession of a valid object or its identifier to verify all operations that lead to its cre-
ation; they are also used to support non-equivocation—preventing Chainspace nodes
from providing a split view of the state they hold without detection.

Hash-DAG structure. Objects and transactions naturally form a directed acyclic graph
(DAG): given an initial state of active objects a number of transactions render their inputs
invalid, and create a new set of outputs as active objects. These may be represented as
a directed graph between objects, transactions and new objects and so on. Each object
may only be created by a single transaction trace, thus cycles between future transactions
and previous objects never occur. We prove that output object identifiers resulting from
valid transactions are fresh (see Security Theorem 1). Hence, the graph of objects inputs,
transactions and objects outputs form a DAG, that may be indexed by their identifiers.

We leverage this DAG structure, and augment it to provide a high-integrity data struc-
ture. Our principal aim is to ensure that given an object, and its identifier, it is possible
to unambiguously and unequivocally check all transactions and previous (now inactive)
objects and references that contribute to the existence of the object. To achieve this we
define as an identifier for all objects and transactions a cryptographic hash that directly
or indirectly depends on the identifiers of all state that contributed to the creation of the
object.

Specifically, we define a function id(Trace) as the identifier of a trace contained in
transaction T . The identifier of a trace is a cryptographic hash function over the name
of contract and the procedure producing the trace; as well as serialization of the input
object identifiers, the reference object identifiers, and all local state of the transaction (but
not the secret state of the procedures); the identifiers of the trace’s dependencies are
also included. Thus all information contributing to defining the Trace is included in the
identifier, except the output object identifiers.

We also define the id(o) as the identifier of an object o. We derive this identifier
through the application of a cryptographic hash function, to the identifier of the trace that
created the object o, as well as a unique name assigned by the procedures creating the
trace, to this output object. (Unique in the context of the outputs of this procedure call,
not globally, such as a local counter.)

An object identifier id(o) is a high-integrity handle that may be used to authenticate
the full history that led to the existence of the object o. Due to the collision resistance
properties of secure cryptographic hash functions an adversary is not able to forge a past
set of objects or transactions that leads to an object with the same identifier. Thus, given
id(o) anyone can verify the authenticity of a trace that led to the existence of o.

A very important property of object identifiers is that future transactions cannot re-
create an object that has already become inactive. Thus checking object validity only
requires maintaining a list of active objects, and not a list of past inactive objects:

H2020-ICT-2016-1 14 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

Security Theorem 1. No sequence of valid transactions, by a polynomial time con-
strained adversary, may re-create an object with the same identifier with an object that
has already been active in the system.

Proof. We argue this property by induction on the serialized application of valid transactions,
and for each transaction by structural induction on the two validity rules. Assuming a history of
n − 1 transactions for which this property holds we consider transaction n. Within transaction
n we sequence all traces and their dependencies, and follow the data flow of the creation of
new objects by the ‘check’ rule. For two objects to have the same id(o) there need to be two
invocations of the check rule with the same contract, procedure, inputs and references. However,
this leads to a contradiction: once the first trace is checked and considered valid the active input
objects are removed from the active set, and the second invocation becomes invalid. Thus, as
long as object creation procedures have at least one input (which is ensured by the side condition)
the theorem holds, unless an adversary can produce a hash collision. The inductive base case
involves assuming that no initial objects start with the same identifier – which we can ensure
axiomatically.

We call this directed acyclic graph with identifiers derived using cryptographic func-
tions a Hash-DAG, and we make extensive use of the identifiers of objects and their
properties in Chainspace.

Node Hash-Chains. Each node in Chainspace, that is entrusted with preserving in-
tegrity, associates with its shard a hash chain. Periodically, peers within a shard consis-
tently agree to seal a checkpoint, as a block of transactions into their hash chains. They
each form a Merkle tree containing all transactions that have been accepted or rejected
in sequence by the shard since the last checkpoint was sealed. Then, they extend their
hash chain by hashing the root of this Merkle tree and a block sequence number, with
the head hash of the chain so far, to create the new head of the hash chain. Each peer
signs the new head of their chain, and shares it with all other peers in the shard, and any-
one who requests it. For strong auditability additional information, besides committed or
aborted transactions, has to be included in the Merkle tree: node should log any promise
to either commit or abort a transaction from any other peer in any shard (the prepared(T,*)
statements explained in the next sections).

All honest nodes within a shard independently create the same chain for a checkpoint,
and a signature on it—as long as the consensus protocols within the shards are correct.
We say that a checkpoint represents the decision of a shard, for a specific sequence
number, if at least f + 1 signatures of shard nodes sign it. On the basis of these hash
chains we define a partial audit and a full audit of the Chainspace system.

In a partial audit a client is provided evidence that a transaction has been either
committed or aborted by a shard. A client performing the partial audit may request from
any node of the shard evidence for a transaction T. The shard peer will present a block
representing the decision of the shard, with f + 1 signatures, and a proof of inclusion of a
commit or abort for the transaction, or a signed statement the transaction is unknown. A
partial audit provides evidence to a client of the fate of their transaction, and may be used
to detect past of future violations of integrity. A partial audit is an efficient operation since
the evidence has size O(s+logN) in N the number of transactions in the checkpoint and
s the size of the shard—thanks to the efficiency of proving inclusion in a Merkle tree, and
checking signatures.

A full audit involves replaying all transactions processed by the shard, and ensuring
that (1) all transactions were valid according to the checkers the shard executed; (2)
the objects input or references of all committed transactions were all active (see rules
in Figure 4); and (3) the evidence received from other shards supports committing or
aborting the transactions. To do so an auditor downloads the full hash-chain representing

H2020-ICT-2016-1 15 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

the decisions of the shard from the beginning of time, and re-executes all the transactions
in sequence. This is possible, since—besides their secret signing keys—peers in shards
have no secrets, and their execution is deterministic once the sequence of transactions
is defined. Thus, an auditor can re-execute all transactions in sequence, and check that
their decision to commit or abort them is consistent with the decision of the shard. Doing
this, requires any inter-shard communication (namely the promises from other shards to
commit or abort transactions) to be logged in the hash-chain, and used by the auditor to
guide the re-execution of the transactions. A full audit needs to re-execute all transactions
and requires evidence of size O(N) in the number N of transactions. This is costly, but
may be done incrementally as new blocks of shard decisions are created.

4.4 Distributed Architecture & Consensus

A network of nodes manages the state of Chainspace objects, keeps track of their validity,
and record transactions that are seen or that are accepted as being committed.

Chainspace uses sharding strategies to ensure scalability: a public function shard(o)
maps each object o to a set of nodes, we call a shard. These nodes collectively are
entrusted to manage the state of the object, keep track of its validity, record transactions
that involve the object, and eventually commit at most one transaction consuming the
object as input and rendering it inactive. However, nodes must only record such a trans-
action as committed if they have certainty that all other nodes have, or will in the future,
record the same transaction as consuming the object. We call this distributed algorithm
the consensus algorithm within the shard.

For a transaction T we define a set of concerned nodes, Φ(T) for a transaction struc-
ture T . We first denote as ζ the set of all objects identifiers that are input into or referenced
by any trace contained in T . We also denote as ξ the set of all objects that are output by
any trace in T . The function Φ(T) represents the set of nodes that are managing objects
that should exist, and be active, in the system for T to succeed. More mathematically,
Φ(T) =

⋃{φ(oi)|oi ∈ ζ \ ξ}, where ζ \ ξ represents the set of objects input but not output
by the transaction itself (its free variables). The set of concerned peers thus includes all
shard nodes managing objects that already exist in Chainspace that the transaction uses
as references or inputs.

An important property of this set of nodes holds, that ensures that all smart contracts
involved in a transaction will be mapped to some concerned nodes that manage state
from this contract:

Security Theorem 2. If a contract c appears in any trace within a transaction T , then the
concerned nodes set Φ(T) will contain nodes in a shard managing an object o of a type
from contract c. I.e. ∃o.type(o) ∈ types(c) ∧ shard(o) ∩ Φ(T) 6= ∅.
Proof. Consider any trace t within T , from contract c. If the inputs or references to this trace are
not in ξ—the set of objects that were created within T—then their shards will be included within
Φ(T). Since those are of types within c the theorem holds. If on the other hand the inputs or
references are in ξ, it means that there exists another trace within T from the same contract c that
generated those outputs. We then recursively apply the case above to this trace from the same
c. The process will terminate with some objects of types in c and shard managing them within the
concerned nodes set—and this is guarantee to terminate due to the Hash-DAG structure of the
transactions (that may have no loops).

Security Theorem 2 ensures that the set of concerned nodes, includes nodes that
manage objects from all contracts represented in a transaction. Chainspace leverages
this to distribute the process of rule validation across peers in two ways:

H2020-ICT-2016-1 16 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

• For any existing object o in the system, used as a reference or input within a trans-
action T , only the shard nodes managing it, namely in shard(o), need to check that
it is active (as part of the ‘check’ rule in Figure 4).

• For any trace t from contract c within a transaction T , only shards of concerned
nodes that manage objects of types within c need to run the checker of that contract
to validate the trace (again as part of the ‘check’ rule), and that all input, output and
reference objects are of types within c.

However, all shards containing concerned nodes for T need to ensure that all others
have performed the necessary checks before committing the transaction, and creating
new objects.

There are many options for ensuring that concerned nodes in each shards do not
reach an inconsistent state for the accepted transactions, such as Nakamoto consensus
through proof-of-work [24], two-phase commit protocols [18], and classical consensus
protocols like Paxos [17], PBFT [11], or xPaxos [20]. However, these approaches lack in
performance, scalability, and/or security. We design an open, scalable and decentralized
mechanism to perform Sharded Byzantine Atomic Commit.

4.5 Leaderful Sharded Byzantine Atomic Commit

Atomic commit protocols such as two-phase commit [14] have long been used in dis-
tributed systems to allow a transaction to be committed atomically. The goal is for the
system to have a consistent state by ensuring that all the resource managers correspond-
ing to the transaction accept it, or reject it. Effectively, a transaction rejected by a single
resource manager will lead to all the other resource managers rejecting the transaction.

Recently, atomic commit protocols have been adapted to achieve consistency in sharded
distributed ledgers [7] based on blockchains. A blockchain is a transparent and publicly
verifiable distributed ledger. Every data item (or block) in a blockchain verifies all the
previous blocks, thus offering transparency and integrity. A blockchain is maintained by a
group of nodes that have to agree (or reach consensus) on whether or not to add a block
made of transactions submitted by client to a blockchain. A key limitation of blockchains
has been poor performance [7]. As every node handles every transaction, the system per-
formance degrades under high transaction load. Counter-intuitively, adding more nodes
to the system leads to further performance deterioration due to the communication com-
plexity of reaching consensus among a larger set of nodes.

To address blockchain scalability issues, a number of recent systems have moved
to sharded system designs. The key idea is to create groups (or shards) of nodes that
handle only a subset of all the transactions. These systems achieve optimal performance
and scalability because: (i) non-conflicting transactions can be processed in parallel by
multiple shards, and (ii) the system can scale up via creation of new shards. The separa-
tion of transaction handling across shards is not perfectly ‘clean’—a transaction might rely
on data managed by multiple shards. In such cases, all the concerned shards process
the transaction. This implies that consensus has to be reached not only within a shard
(intra-shard consensus), but also across all the concerned shards (cross-shard consen-
sus). Intra-shard consensus is typically achieved via Byzantine Fault Tolerant protocols
like PBFT. For cross-shard consensus, typically atomic commit protocol is run across all
the concerned shards (with each shard acting as a single resource manager) to ensure
that the transaction is accepted by all or none of the concerned shards.

L-SBAC builds on top of S-BAC [6] and integrates design features from Atomix [16].
In S-BAC, all input shards communicate with all other input shards, which creates a com-
munication complexity of O(n2) where n is the number of input shards. L-SBAC allocates

H2020-ICT-2016-1 17 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

accept(T)pre-accept(T)

client

shard 1

shard 2

shard 3

TM

Figure 5: An example execution of L-SBAC for a valid transaction T (x1, x2) → (y1, y2, y3) with two inputs
(x1 and x2, both are active) and three outputs (y1, y2, y3), where the final decision is accept(T).

a leader, called Transaction Manager (TM), that coordinates the protocols to reduce costs
communication to O(n) in the happy case, similarly to Atomix. L-SBAC also looks at how
to fall back in case such a leader fails.We illustrate L-SBAC taking the example of a trans-
action T (x1, x2) → (y1, y2, y3) with two inputs, x1 managed by shard 1 and x2 managed
by shard 2; and three outputs, y1 managed by shard 1, y2 managed by shard 2, and y3
managed by shard 3.

L-SBAC Design Figure 5 illustrates the L-SBAC protocol; the client first sends the trans-
action to all input and output shards. Contrarily to S-BAC, shards create t dummy objects
upon configuration. If a shard is involved in a transaction but only handles output objects,
the transaction consumes one of its dummy inputs instead; and creates a new dummy
object upon completion. These dummy objects are handled by S-BAC similarly to how
Chainspace handles token, and are necessary to mitigate replay attacks.

Shards sequence the transaction and send pre-accept(T) or pre-abort(T) messages
to the TM; the TM then aggregates and reflects these messages to all shards involved in
the transaction. They then sequence the transaction and issue an accept(T) or abort(T)
back to the client. The result of L-SBAC is that, as in Atomix and traditional two phase
commit protocols, the communication complexity is only O(n) in the number of shards.

Transaction Manager Atomix uses this approach with the TM being the client. However
the TM can be a shard, in which case the input shards contact in turn each node of the
TM shard until they reach one honest node. We show how L-SBAC guarantees liveness
under different threat models.

If the TM is a shard, under the honest shard assumption the shard that is in charge of
being the Transaction Manager is live, and therefore progress is always made. However,
any particular node of such a shard may not be honest. Therefore we need to send
messages to at least f + 1 nodes to ensure at least one is honest. Both the client and
other honest nodes may do this sequentially upon a timeout. Thus, as soon as the first
honest node receives the message the protocol progresses.

Under dishonest shard assumption or if the TM is the client, the TM may act arbitrary,
but anyone can make the protocol progress by taking over at any time the role of the TM
since the TM does not act on the basis of any secrets. Therefore ensuring that nodes
queried about the first or second phase of L-SBAC act in an idempotent manner anyone
else can take over and complete the protocols. This "anyone" may be a honest node in a
shard that wants to finally unlock a resource, upon a timeout. It may be other users that

H2020-ICT-2016-1 18 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

none active

locked
(T,s)

inactivepre-accept(T,s)

pre-abort(T,s)

accept(T',s') accept(T,s)
and

s is well formed

pre-accept(T'',s'')
or

pre-abort(T'',s'')

update
s

pre-abort(T,s)

Figure 6: State machine representing a the life cycle of Chainspace objects.

wish to use a resource; or it may be an external service that has as a job to periodically
close open L-SBAC instances. Therefore, L-SBAC guarantees liveness as long as there
is at least one honest entity in the system; and thus holds also under dishonest shard
assumption.

Object sequence numbers To prevent replay attacks, L-SBAC associates a sequence
number soi to each object (and dummy object) oi; soi = 0 when the object is created.
The sequence number is intrinsically liked to the object (i.e., when clients query shards
to obtain an object oi, they also receive soi). Figure 6 shows the finite state machine
describing the life cycle of objects.

Upon submitting a transaction T (o1, . . . , ok) → (ok+1, . . . , on), the client sends along
a sequence number s computed as below:

s = max{so1 , . . . , sok} (3)

The sequence number s is the maximum of the sequence numbers soi of each input
object oi ∈ T .

Upon reception of a new pair (T, s), each shard saves (T, s) in a local cache memory—
the sequence number s acts as session identifier associated with the transaction T . Then,
shards perform the first phase of S-BAC to decide whether the transaction is to accept or
to abort; if the transaction is to accept, they emit pre-accept(T, s); otherwise, they send
pre-abort(T, s).

Upon reception of any pre-accept(T, s) or pre-abort(T, s) messages, shards first verify
that they previously cached the pair (T, s) associated with the message; otherwise they
ignore it. All shards have now enough evidences to verify whether s is correctly computed
(i.e., if it is computed according to Equation 3). If it is the case and they received a pre-
accept(T, s) message from each concerned shard, they emit accept(T). Otherwise, they
emit abort(T) and update the sequence numbers of each input objects (so1 , . . . , sok) to
(s+ 1); and delete (T, s) from the cache.

4.6 System Contracts

The operation of Chainspace itself requires the maintenance of a number of high-integrity
high-availability data structures. Instead of employing an ad-hoc mechanism, Chainspace
employs a number of system smart contracts to implement those. Effectively, instantiation
of Chainspace is the combination of nodes running the basic L-SBAC protocol, as well as
a set of system smart contracts providing flexible policies about managing shards, smart
contract creation, auditing and accounting. This section provides an overview of system
smart contracts.

H2020-ICT-2016-1 19 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

Shard management. The discussion of Chainspace so far, has assumed a function
shard(o) mapping an object o to nodes forming a shard. However, how those shards
are constituted has been abstracted. A smart contract ManageShards is responsible for
mapping nodes to shards. ManageShards initializes a singleton object of type MS.Token
and provides three procedures: MS.create takes as input a singleton object, and a list of
node descriptors (names, network addresses and public verification keys), and creates
a new singleton object and a MS.Shard object representing a new shard; MS.update
takes an existing shard object, a new list of nodes, and 2f + 1 signatures from nodes in
the shard, and creates a new shard object representing the updated shard. Finally, the
MS.object procedure takes a shard object, and a non-repudiable record of malpractice
from one of the nodes in the shard, and creates a new shard object omitting the malicious
shard node—after validating the misbehaviour. Note that Chainspace is ‘open’ in the
sense that any nodes may form a shard; and anyone may object to a malicious node and
exclude it from a shard.

Smart-contract management. Chainspace is also ‘open’ in the sense that anyone may
create a new smart contract, and this process is implemented using the ManageContracts
smart contract. ManageContracts implements three types: MC.Token, MC.Mapping and
MC.Contract. It also implements at least one procedure, MC.create that takes a binary
representing a checker for the contract, an initialization procedure name that creates
initial objects for the contract, and the singleton token object. It then creates a number of
outputs: one object of type MC.Token for use to create further contracts; an object of type
MC.Contract representing the contract, and containing the checker code, and a mapping
object MC.mapping encoding the mapping between objects of the contract and shards
within the system. Furthermore, the procedure MC.create calls the initialization function
of the contract, with the contract itself as reference, and the singleton token, and creates
the initial objects for the contract.

Note that this simple implementation for ManageContracts does not allow for updat-
ing contracts. The semantics of such an update are delicate, particularly in relation to
governance and backwards compatibility with existing objects. We leave the definitions
of more complex, but correct, contracts for managing contracts as future work. In our first
implementation we have hardcoded ManageShards and ManageContracts.

Payments for processing transactions. Chainspace is an open system, and requires
protection againt abuse resulting from overuse. To achieve this we implement a method
for tracking value through a contract called CSCoin.

The CSCoin contract creates a fixed initial supply of coins—a set of objects of type
The CSCoin.Account that may only be accessed by a user producing a signature verified
by a public key denoted in the object. A CSCoin.transfer procedure allows a user to input
a number of accounts, and transfer value between them, by producing the appropriate
signature from incoming accounts. It produces a new version of each account object with
updated balances. This contract has been implemented in Python with approximately 200
lines of code. The CSCoin contract is designed to be composed with other procedures, to
enable payments for processing transactions. The transfer procedure outputs a number of
local returns with information about the value flows, that may be used in calling contracts
to perform actions conditionally on those flows. Shards may advertise that they will only
consider actions valid if some value of CSCoin is transferred to their constituent nodes.
This may apply to system contracts and application contracts.

H2020-ICT-2016-1 20 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

5 Smart Contract Applications

We present two example of smart contract applications relevant to DECODE.

5.1 Privacy-preserving petition

We consider the scenario where several authorities managing the country C wish to
issue some long-term credentials to its citizens to enable any third party to organize a
privacy-preserving petition. All citizens of C are allowed to participate, but should remain
anonymous and unlinkable across petitions. This application extends the work of Diaz et
al. [13] which does not consider threshold issuance of credentials.

Our petition system is based on the Coconut library contract and a simple smart
contract called “petition". There are three types of parties: a set of signing authorities
representing C, a petition initiator, and the citizens of C. The signing authorities create
an instance of the Coconut smart contract as described in [31]. As shown in Figure 7,
the citizen provides a proof of identity to the authorities (Ê). The authorities check the
citizen’s identity, and issue a blind and long-term signature on her private key k. This
signature, which the citizen needs to obtain only once, acts as her long term credential
to sign any petition (Ë).

Figure 7: The petition application.

Any third party can create a petition by creating a new instance of the petition contract
and become the “owner" of the petition. The petition instance specifies an identifier gs ∈
G1 unique to the petition where its representation is unlinkable to the other points of the
scheme1, as well as the verification key of the authorities issuing the credentials and any
application specific parameters (e.g., the options and current votes) (Ì). In order to sign a
petition, the citizens compute a value ζ = gks . They then adapt the zero-knowledge proof
of the algorithm of [31] to show that ζ is built from the same attribute k in the credential;
the petition contract checks the proofs and the credentials, and checks that the signature
is fresh by vserifying that ζ is not part of a spent list. If all the checks pass, it adds the
citizens’ signatures to a list of records and adds ζ to the spent list to prevents a citizen
from signing the same petition multiple times (prevent double spending) (Í). Also, the
zero-knowledge proof ensures that ζ has been built from a signed private key k; this
means that the users correctly executed the callback to prove that they are citizens of C.

1This identifier can be generated through a hash function Fp → G1 : H̃(s) = gs | s ∈ Fp.

H2020-ICT-2016-1 21 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

Operation vote vote opposite

Yes; Male; Barcelona E(0) E(1)
No; Male; Barcelona E(0) E(1)
Yes; Female; Barcelona E(1) E(0)
No; Female; Barcelona E(0) E(1)
· · · · · · · · ·

Table 3: Example of voting option for demographic decision-making contract.

Security consideration. Coconut’s blindness property prevents the authorities from
learning the citizen’s secret key, and misusing it to sign petitions on behalf of the citizen.
Another benefit is that it lets citizens sign petitions anonymously; citizens only have to
go through the issuance phase once, and can then re-use credentials multiple times
while staying anonymous and unlinkable across petitions. Coconut allows for distributed
credentials issuance, removing a central authority and preventing a single entity from
creating arbitrary credentials to sign petitions multiple times.

Javascript implementation. The petition contract described above has also been in-
dependently implemented in JavaScript 2. The main motivation of a JavaScript imple-
mentation is for the client to be able to locally (in the browser) and trustlessly compute
the necessary cryptographic constructs and operations without relying on any single 3rd
party, and at the same time provide the users with a nice interface and user-experience 3.

5.2 Demographic decision-making smart contract

We extends the privacy-preserving petition application presented in Section 5.1 to a de-
mographic decision-making contract capable to collect statistical information about the
participants. Similarly to Section 5.1, we consider several authorities wishing to issue
some long-term credentials to a set participants, enabling any third party to organize a
decision-making event. All participants remain anonymous and unlinkable across events,
but can participate only once per event.

Our application is based on the Coconut library smart contract and a simple smart
contract called “demographic", extending the “petition" described in Section 5.1. The ap-
plication considers three types of parties: a set of signing authorities, an event organizer,
and the participants. The authorities create an instance of the Coconut smart contract as
described in [30], and issue credentials to the participants as described in Section 5.1.

Any third party can create an event by running a new instance of the demographic
contract, and specifying the options. Participants vote on the option corresponding to
their demographic information by showing their credentials to the smart contract, and
uploading encrypted votes for each possible option, as well as the opposite of each vote.
Table 3 illustrates a simple example of demographic decision-making contract, collecting
statistical information about the gender and city of the participant. Participants encrypt 1
to indicate their choice (i.e., E(1)); otherwise they encrypt 0 (i.e., E(0)). They also upload
a zk-proof ensuring that the sum of their votes equals 1, that the sum of each row of
the table also equals 1, and that votes (and their opposite) are binary values. Similarly
to Section 5.1, to prevent participants to vote multiple times, the demographic contract
instance specifies an identifier gs ∈ G1 unique to the event where its representation is

2https://github.com/jadwahab/Coconut-petition
3https://www.benthamsgaze.org/2018/11/12/coconut-e-petition-implementation/

H2020-ICT-2016-1 22 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

unlinkable to the other points of the scheme. It also specifies the verification key of the
authorities issuing the credentials and any application specific parameters.

6 Conclusion

We presented the intermediary architecture of DECODE. As its heart, DECODE relies
on a distributed ledger, Chainspace, which is an open, distributed ledger platform for
high-integrity and transparent processing of transactions. Chainspace offers extensibility
though privacy-friendly smart contracts. We presented an instantiation of Chainspace by
parameterizing it with a number of ‘application’ contracts. However, unlike existing smart-
contract based systems such as Ethereum [32], it offers high scalability through sharding
across nodes using a novel distributed atomic commit protocol, while offering high au-
ditability. As such it offers a competitive alternative to both centralized and permissioned
systems, as well as fully peer-to-peer, but unscalable systems like Ethereum.

H2020-ICT-2016-1 23 D1.5

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

References

[1] Decode chainspace. https://github.com/DECODEproject/chainspace.
Accessed: 2019-01-21.

[2] Decode os. https://github.com/DECODEproject/decode-os. Accessed:
2019-01-21.

[3] Decode tordam. https://github.com/DECODEproject/tor-dam. Accessed:
2019-01-21.

[4] Decode wallet. https://github.com/DECODEproject/wallet. Accessed:
2019-01-21.

[5] Decode zenroom. https://github.com/DECODEproject/zenroom. Ac-
cessed: 2019-01-21.

[6] AL-BASSAM, M., SONNINO, A., BANO, S., HRYCYSZYN, D., AND DANEZIS, G.
Chainspace: A Sharded Smart Contracts Platform. In Proceedings of the Network
and Distributed System Security Symposium (NDSS) (2018).

[7] BANO, S., AL-BASSAM, M., AND DANEZIS, G. The Road to Scalable Blockchain
Designs. ;login: The USENIX Magazine 42, 4 (2017).

[8] BOOTLE, J., CERULLI, A., CHAIDOS, P., AND GROTH, J. Efficient zero-knowledge
proof systems. In Foundations of Security Analysis and Design VIII. Springer, 2016,
pp. 1–31.

[9] CACHIN, C. Architecture of the hyperledger blockchain fabric. In Workshop on
Distributed Cryptocurrencies and Consensus Ledgers (2016).

[10] CASTRO, M., LISKOV, B., ET AL. Practical byzantine fault tolerance. In OSDI (1999),
vol. 99, pp. 173–186.

[11] CASTRO, M., LISKOV, B., ET AL. Practical byzantine fault tolerance. In OSDI (1999),
vol. 99, pp. 173–186.

[12] DANEZIS, G., GROTH, J., FOURNET, C., AND KOHLWEISS, M. Square span pro-
grams with applications to succinct nizk arguments. Springer Berlin Heidelberg.

[13] DIAZ, C., KOSTA, E., DEKEYSER, H., KOHLWEISS, M., AND NIGUSSE, G. Privacy
preserving electronic petitions. Identity in the Information Society 1, 1 (2008), 203–
219.

[14] GRAY, J. N. Notes on database operating systems. In Operating Systems. Springer,
1978, pp. 393–481.

[15] HUMBLE, J., AND FARLEY, D. Continuous Delivery: Reliable Software Releases
Through Build, Test, and Deployment Automation, 1st ed. Addison-Wesley Profes-
sional, 2010.

[16] KOKORIS-KOGIAS, E., JOVANOVIC, P., GASSER, L., GAILLY, N., AND FORD, B. Om-
niledger: A secure, scale-out, decentralized ledger. IACR Cryptology ePrint Archive
2017 (2017), 406.

[17] LAMPORT, L., ET AL. Paxos made simple. ACM Sigact News 32, 4 (2001), 18–25.

H2020-ICT-2016-1 24 D1.5

https://github.com/DECODEproject/chainspace
https://github.com/DECODEproject/decode-os
https://github.com/DECODEproject/tor-dam
https://github.com/DECODEproject/wallet
https://github.com/DECODEproject/zenroom

H2020–ICT-2016-1 DECODE
 D.3.8 "Decentralised models for data and identity management: Blockchain and ABC MVPs"

 Project no. 732546

DECODE
DEcentralised Citizens Owned Data Ecosystem

[D3.8] ["Decentralised models for data and identity management: Blockchain and ABC MVPs"]

Version Number: [V1.2]

Lead beneficiary: [RU]

Due Date: [dec 2018]

Author(s): Paulus Meessen (RU), Marloes Venema (RU), Alberto Sonnino (UCL), Shehar Bano (UCL)

Editors and reviewers: Alberto Sonnino (UCL), Sam Mulube (TH), Denis Jaromil Roio (DYNE)

Dissemination level:

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

Approved by: Francesca Bria (Chief Technology and Digital Innovation Officer, Barcelona City Hall)

Date: [31/12/2018]

This report is currently awaiting approval from the EC and cannot be not considered to be a final version.

[18] LAMPSON, B., AND LOMET, D. B. Distributed transaction processing using two-
phase commit protocol with presumed-commit without log force, Aug. 2 1994. US
Patent 5,335,343.

[19] LAURIE, B., LANGLEY, A., AND KASPER, E. Certificate transparency. Tech. rep.,
2013.

[20] LIU, S., CACHIN, C., QUÉMA, V., AND VUKOLIC, M. Xft: practical fault tolerance
beyond crashes. CoRR, abs/1502.05831 (2015).

[21] MCCONAGHY, T., MARQUES, R., MÜLLER, A., DE JONGHE, D., MCCONAGHY,
T., MCMULLEN, G., HENDERSON, R., BELLEMARE, S., AND GRANZOTTO, A.
Bigchaindb: a scalable blockchain database. white paper, BigChainDB (2016).

[22] MIERS, I., GARMAN, C., GREEN, M., AND RUBIN, A. D. Zerocoin: Anonymous
distributed e-cash from bitcoin. In Security and Privacy (SP), 2013 IEEE Symposium
on (2013), IEEE, pp. 397–411.

[23] MORRIS, K. Infrastructure As Code: Managing Servers in the Cloud, 1st ed. O’Reilly
Media, Inc., 2016.

[24] NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash system, 2008.

[25] NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash system.

[26] OWASP. Owasp stride classification scheme. https://update-wiki.owasp.
org/index.php/Threat_Risk_Modeling#STRIDE. Accessed: 2019-01-21.

[27] OWASP. Owasp threat modelling. https://www.owasp.org/index.php/
Application_Threat_Modeling. Accessed: 2019-01-21.

[28] PEDERSEN, T. P., ET AL. Non-interactive and information-theoretic secure verifiable
secret sharing. In Crypto, vol. 91.

[29] SALTZER, J. H., REED, D. P., AND CLARK, D. D. End-to-end arguments in system
design. ACM Transactions on Computer Systems (TOCS) 2, 4.

[30] SONNINO, A., AL-BASSAM, M., BANO, S., AND DANEZIS, G. Coconut: Thresh-
old issuance selective disclosure credentials with applications to distributed ledgers.
arXiv preprint arXiv:1802.07344 (2018).

[31] SONNINO, A., AL-BASSAM, M., BANO, S., AND DANEZIS, G. Coconut: Thresh-
old issuance selective disclosure credentials with applications to distributed ledgers.
CoRR abs/1802.07344 (2018).

[32] WOOD, G. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151 (2014).

H2020-ICT-2016-1 25 D1.5

https://update-wiki.owasp.org/index.php/Threat_Risk_Modeling#STRIDE
https://update-wiki.owasp.org/index.php/Threat_Risk_Modeling#STRIDE
https://www.owasp.org/index.php/Application_Threat_Modeling
https://www.owasp.org/index.php/Application_Threat_Modeling

	Introduction
	Backgrounds
	Cross-Shard Atomic Commit Protocols
	Coconut: Threshold Issuance Selective Disclosure Credentials

	System Overview
	High Level Architecture
	Production Readiness
	Threat Modelling

	Distributed Ledger
	Data Model: Objects, Contracts, Transactions.
	Application Interface
	High-Integrity Data Structures
	Distributed Architecture & Consensus
	Leaderful Sharded Byzantine Atomic Commit
	System Contracts

	Smart Contract Applications
	Privacy-preserving petition
	Demographic decision-making smart contract

	Conclusion

